解析:由已知IM={-3.-4}.∴IM∩N={-3.-4}. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

已知曲線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:的極坐標(biāo)方程是=2,正方形ABCD的頂點(diǎn)都在上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,).

(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);

 (Ⅱ)設(shè)P為上任意一點(diǎn),求的取值范圍.

【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.

【解析】(Ⅰ)由已知可得,

,,

即A(1,),B(-,1),C(―1,―),D(,-1),

(Ⅱ)設(shè),令=,

==,

,∴的取值范圍是[32,52]

 

查看答案和解析>>

若(x-i)i=y+2i,x,y∈R,則復(fù)數(shù)xyi=________.

解析:由已知得:1+xi=y+2i,∴x=2,y=1,∴xyi=2+i.

查看答案和解析>>

(1)已知π<α+β<
2
-
π
4
<α-β<0,sin(α+β)=-
3
5
,cos(α-β)=
12
13
,求sin2α 的值.
(2)已知tanα=-
3
4
,求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.

查看答案和解析>>

精英家教網(wǎng)將三角形紙片(△ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′、F、C為頂點(diǎn)的三角形與△ABC相似,那么BF的長度是
 

查看答案和解析>>


同步練習(xí)冊答案