解析:依題意可得.可得0<x<1. 查看更多

 

題目列表(包括答案和解析)

解析:依題意可得對(duì)稱軸x=1,∴a=5.

答案:C

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問(wèn)題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),;

當(dāng)時(shí),

當(dāng)b>2時(shí),;             ............8分

問(wèn)題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>

已知函數(shù)f(x)=,為常數(shù)。

(I)當(dāng)=1時(shí),求f(x)的單調(diào)區(qū)間;

(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求的取值范圍。

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn)中,利用當(dāng)a=1時(shí),f(x)=,則f(x)的定義域是然后求導(dǎo),,得到由,得0<x<1;由,得x>1;得到單調(diào)區(qū)間。第二問(wèn)函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),則在區(qū)間[1,2]上恒成立,即即,或在區(qū)間[1,2]上恒成立,解得a的范圍。

(1)當(dāng)a=1時(shí),f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)!6分

(2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),

在區(qū)間[1,2]上恒成立。∴,或在區(qū)間[1,2]上恒成立。即,或在區(qū)間[1,2]上恒成立。

又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或

 

查看答案和解析>>

現(xiàn)有4個(gè)人去參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;

(Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

(Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.

設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件

.

(1)這4個(gè)人中恰有2人去參加甲游戲的概率

(2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

(3)的所有可能取值為0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

隨機(jī)變量的數(shù)學(xué)期望.

 

查看答案和解析>>

 D

[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),選D.

查看答案和解析>>


同步練習(xí)冊(cè)答案