已知的三個內角..所對的邊分別為..,且. 查看更多

 

題目列表(包括答案和解析)

已知△的三個內角所對的邊分別為、.,且.(1)求的大。唬2)若.求.

 

查看答案和解析>>

已知△的三個內角、、所對的邊分別為、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

的三個內角、所對邊的長分別為、、,已知, 則             .

查看答案和解析>>

的三個內角、所對邊的長分別為、、,已知,

    則          .

查看答案和解析>>

的三個內角、所對邊的長分別為、,已知, 則             .

查看答案和解析>>

 

說明:

       一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內容比照評分標準制定相應的評分細則.

       二、對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應給分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

       三、解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

       四、只給整數(shù)分數(shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分50分.

1. A        2. C        3. C        4.C         5.D         6.D         7. B        8. D        9. B        10. C

二、填空題:本題考查基本知識和基本運算,每小題4分,滿分20分.

11.  12.38            12.  5           13.  3        14.     15. ②③

三、解答題:本大題共6小題,共80分,解答應寫出文字說明,證明過程或演算步驟.

16. 本小題主要考查正弦定理、三角函數(shù)的倍角公式、兩角和公式等基本知識,考

查學生的運算求解能力. 滿分13分.

解:(Ⅰ)由,知                 ………………………(2分)

,得,

          ,                   ………(5分)

                                   ………(6分)

(Ⅱ) 由(Ⅰ)知,

          

                   ………………(9分)

         ,

         當,即時,取得最大值為.   ……(13分)                               

17. 本題主要考查線線、線面、面面位置關系,線面角等基本知識,考查空間想像能力,運算求解能力和推理論證能力. 滿分13分.

解:(Ⅰ)證明:如圖,取中點,連結;

,

,

,…………(3分)

四邊形為平行四邊形,

,

平面平面,

∥平面.                        ………………………(6分)

(Ⅱ)依題意知平面平面,

平面,得  

.

如圖,以為原點,建立空間直角坐標系-xyz

,可得、、,

.

設平面的一個法向量為

   得

解得,.            ………………(9分)

設線段上存在一點,其中,則,

,

依題意:,即,

可得,解得(舍去).  

 所以上存在一點.   …………(13分)

18.本題主要考查函數(shù)與導數(shù)等基本知識,考查運用數(shù)學知識分析問題與解決問題的能力,

考查應用意識. 滿分13分.

  解:(Ⅰ)依題意,銷售價提高后為6000(1+)元/臺,月銷售量為臺…(2分)

               ……………………(4分)

.       ……………………(6分)

(Ⅱ),得,

解得舍去).                      ……………………(9分)

時,取得最大值.

此時銷售價為元.

答:筆記本電腦的銷售價為9000元時,電腦企業(yè)的月利潤最大.…………………(13分)

19.本題主要考查直線與橢圓的位置關系、不等式的解法等基本知識,考查運算求解能力和分析問題、解決問題的能力. 滿分13分

解:(Ⅰ)因為橢圓的一個焦點是(1,0),所以半焦距=1.

因為橢圓兩個焦點與短軸的一個端點構成等邊三角形.

所以,解得

所以橢圓的標準方程為.  …(4分)                

(Ⅱ)(i)設直線聯(lián)立并消去得:.

,,

,

.  ……………(5分)

A關于軸的對稱點為,得,根據(jù)題設條件設定點為,0),

,即.所以

即定點(1 , 0).                ……(8分)

(ii)由(i)中判別式,解得.     可知直線過定點 (1,0).

所以          ……………(10分)

,  令

,得,當時,.

上為增函數(shù). 所以 ,

.故△OA1B的面積取值范圍是.           …(13分)

20. 本題主要考查函數(shù)的單調性、等差數(shù)列、不等式等基本知識,考查運用合理的推理證明解決問題的方法,考查分類與整合及化歸與轉化等數(shù)學思想. 滿分14分.

解:(Ⅰ)因為

所以.           ………………(1分)

(i)當時,.

(ii)當時,由,得到,知在.

(iii)當時,由,得到,知在.

綜上,當時,遞增區(qū)間為;當時, 遞增區(qū)間為.                   …………(4分)

(Ⅱ)(i)因為,所以,即,

,即.     ……………………………………(6分)

因為,

時,,

時,,

所以.                  …………………………(8分)

又因為,

所以令,則

得到矛盾,所以不在數(shù)列中.    ………(9分)

(ii)充分性:若存在整數(shù),使.

為數(shù)列中不同的兩項,則.

,所以.

是數(shù)列的第項.           ……………………(10分)

必要性:若數(shù)列中任意不同兩項之和仍為數(shù)列中的項,

,(,為互不相同的正整數(shù))

,令,

得到

所以,令整數(shù),所以. ……(11 分)

下證整數(shù).若設整數(shù).令,

由題設取使

,所以

相矛盾,所以.

綜上, 數(shù)列中任意不同兩項之和仍為數(shù)列中的項的充要條件是存在整數(shù),使.                          ……………………(14分)

21. (1)本題主要考查矩陣乘法、逆矩陣與變換等基本知識,考查運算求解能力, 滿分7分.

解: ,即 ,

所以  得              …………(4分)

     即M=   , .

=1 ,  .          …………(7分)

(2)本題主要考查圓極坐標方程和直線參數(shù)方程等基本知識,考查運算求解能力,考查化歸與轉化思想. 滿分7分.

解:曲線的極坐標方程可化為,

其直角坐標方程為,即.      ………(2分)

直線的方程為.

所以,圓心到直線的距離          ………(5分)

所以,的最小值為.                 …………(7分)

(3)本題主要考查柯西不等式與不等式解法等基本知識,考查化歸與轉化思想. 滿分7分.

解:由柯西不等式:

. …………(3分)

因為

所以,即

因為的最大值是7,所以,得,

時,取最大值,

所以.                         ……………………(7分)

 

 


同步練習冊答案