題目列表(包括答案和解析)
2x-1 | x-2 |
π |
6 |
π |
6 |
π |
3 |
π |
6 |
π |
2 |
3 |
3 |
把函數(shù)的圖象沿 x軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)后得到函數(shù)圖象,對(duì)于函數(shù)有以下四個(gè)判斷:
①該函數(shù)的解析式為; ②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱(chēng); ③該函數(shù)在上是增函數(shù);④函數(shù)在上的最小值為,則.
其中,正確判斷的序號(hào)是________________________
把函數(shù)的圖象沿 x軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)后得到函數(shù)圖象,對(duì)于函數(shù)有以下四個(gè)判斷:
①該函數(shù)的解析式為; ②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱(chēng); ③該函數(shù)在上是增函數(shù);④函數(shù)在上的最小值為,則.
其中,正確判斷的序號(hào)是________________________
一、選擇題(每小題5分,共60分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
A
C
D
A
D
B
D
B
B
A
C
二、填空題(每小題5分,共20分)
13、f(x)=2x3-12x 14、 15、2 16、0≤a≤3
三、解答題
17(10分).解:原不等式等價(jià)于-----------------------------------2分
當(dāng)--------------------------------------------4分
當(dāng)
-------------------------------------------------6分
-------------------------------------------------8分
綜上: --------------------------------10分
18(12分). 解:(Ⅰ)
----------------3分
-----------------------------4分
令 ,
的單調(diào)區(qū)間為 ----------------6分
(Ⅱ)由得----------7分
又為的內(nèi)角,---------8分
-------------------10分
------------12分
19(12分).解:⑴對(duì)任意的正數(shù)均有且.
又----------2分
, ----------------------------------------4分
又是定義在上的單調(diào)函數(shù),. ----------6分
(2)當(dāng)時(shí),,.,.----------8分
當(dāng)時(shí),,
. ----------------------------------------10分
,為等差數(shù)列.
,. -----------------------------------------12分
20(12分). (1)y==
t=2-cosx ∵x∈[0,) ∴t∈[1,2) -----------------------------------------3分
∴y===t+ -1
∵y=t+ -1在t∈[1,2)上為增函數(shù) ∴y∈[1,) 即M=[1,) 6分
(2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0 ∵a<1∴2a<a+1 ∴N=(2a,a+1) 8分
又∁UM=(-∞,1)∪[,+∞) 10分
要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥. 12分
21(12分).解:對(duì)函數(shù)求導(dǎo),得
----------------------------2分
令解得 或
當(dāng)變化時(shí),、的變化情況如下表:
x
0
0
減函數(shù)
增函數(shù)
----------------------4分
所以,當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù);
當(dāng)時(shí),的值域?yàn)?sub> ----------------------------6分
(Ⅱ)對(duì)函數(shù)求導(dǎo),得
因此,當(dāng)時(shí),
因此當(dāng),g(x)為減函數(shù),從而當(dāng)時(shí)有個(gè)g(x)
又g(1)= ----------------8分
若對(duì)于任意,,存在,使得,則
[]
即 ----------------------------------------10分
解式得 或
解式得
又,
故:的取值范圍為 -----------------------------------12分
22(12分). :(1)∵Sn=2an ?n ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分
數(shù)列{an+λ}是等比數(shù)列 即: an+1+λ=2(an+λ),∴λ=1.
∵a1=s1=2a1-1,∴a1=1
∵數(shù)列{ an+1}是首項(xiàng)為2,公比為2的等比數(shù)列 ------------------------4分
∴an+1=(a1+1)2n-1=2n,∴an=2n -1 ------------------------6分
(2)∵an=2n -1
∴bn ====-----------------10分
∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com