②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱(chēng), ③該函數(shù)在上是增函數(shù), 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)y=
2x-1x-2
,則關(guān)于該函數(shù)圖象:
①一定存在兩點(diǎn),這兩點(diǎn)的連線平行于x軸;
②任意兩點(diǎn)的連線都不平行于y軸;
③關(guān)于直線y=x對(duì)稱(chēng);
④關(guān)于原點(diǎn)中心對(duì)稱(chēng).
其中正確的命題是
 

查看答案和解析>>

把函數(shù)y=sin2x的圖象沿 x軸向左平移
π
6
個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)后得到函數(shù)y=f(x)圖象,對(duì)于函數(shù)y=f(x)有以下四個(gè)判斷:
①該函數(shù)的解析式為y=2sin(2x+
π
6
);  
②該函數(shù)圖象關(guān)于點(diǎn)(
π
3
,0
)對(duì)稱(chēng); 
③該函數(shù)在[0,
π
6
]上是增函數(shù);
④函數(shù)y=f(x)+a在[0,
π
2
]上的最小值為
3
,則a=2
3

其中,正確判斷的序號(hào)是
②④
②④

查看答案和解析>>

把函數(shù)的圖象沿 x軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)后得到函數(shù)圖象,對(duì)于函數(shù)有以下四個(gè)判斷:

①該函數(shù)的解析式為;  ②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱(chēng); ③該函數(shù)在上是增函數(shù);④函數(shù)上的最小值為,則

其中,正確判斷的序號(hào)是________________________

 

查看答案和解析>>

把函數(shù)的圖象沿 x軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)后得到函數(shù)圖象,對(duì)于函數(shù)有以下四個(gè)判斷:
①該函數(shù)的解析式為; ②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱(chēng); ③該函數(shù)在上是增函數(shù);④函數(shù)上的最小值為,則
其中,正確判斷的序號(hào)是________________________

查看答案和解析>>

把函數(shù)的圖象沿 x軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)后得到函數(shù)圖象,對(duì)于函數(shù)有以下四個(gè)判斷:
①該函數(shù)的解析式為; ②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱(chēng);、墼摵瘮(shù)在上是增函數(shù);④函數(shù)上的最小值為,則
其中,正確判斷的序號(hào)是________________________

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

D

A

D

B

D

B

B

A

C

二、填空題(每小題5分,共20分)

  13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

三、解答題

17(10分).解:原不等式等價(jià)于-----------------------------------2分

當(dāng)--------------------------------------------4分

當(dāng)

 

-------------------------------------------------6分

 

-------------------------------------------------8分

綜上:   --------------------------------10分

18(12分). 解:(Ⅰ)

                         ----------------3分

      -----------------------------4分

,  

的單調(diào)區(qū)間為     ----------------6分

(Ⅱ)由----------7分

的內(nèi)角,---------8分

          -------------------10分

     ------------12分

19(12分).解:⑴對(duì)任意的正數(shù)均有

----------2分

,                 ----------------------------------------4分

是定義在上的單調(diào)函數(shù),.     ----------6分

(2)當(dāng)時(shí),,.----------8分

當(dāng)時(shí),,

.                 ----------------------------------------10分

,為等差數(shù)列.

,.                      -----------------------------------------12分

20(12分). (1)y==  

     t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

     ∴y===t+ -1

     ∵y=t+ -1在t∈[1,2)上為增函數(shù)  ∴y∈[1,)     即M=[1,)           6分

  (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

     又∁UM=(-∞,1)∪[,+∞)                                             10分

     要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

21(12分).解:對(duì)函數(shù)求導(dǎo),得

----------------------------2分

解得

當(dāng)變化時(shí),的變化情況如下表:

x

0

 

0

 

減函數(shù)

增函數(shù)

                                                ----------------------4分

所以,當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù);

           當(dāng)時(shí),的值域?yàn)?sub>   ----------------------------6分

(Ⅱ)對(duì)函數(shù)求導(dǎo),得

                                 

    因此,當(dāng)時(shí),

因此當(dāng),g(x)為減函數(shù),從而當(dāng)時(shí)有個(gè)g(x)

又g(1)=   ----------------8分

若對(duì)于任意,,存在,使得,則

[]

              ----------------------------------------10分

式得

式得

故:的取值范圍為                 -----------------------------------12分

22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分

     數(shù)列{an+λ}是等比數(shù)列  即: an+1+λ=2(an+λ),∴λ=1.

      ∵a1=s1=2a1-1,∴a1=1 

     ∵數(shù)列{ an+1}是首項(xiàng)為2,公比為2的等比數(shù)列          ------------------------4分

∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

   (2)∵an=2n -1

     ∴bn ====-----------------10分

     ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

 

 

 


同步練習(xí)冊(cè)答案