解:(I)設(shè)切點(diǎn).由.知拋物線在點(diǎn)處的切線斜率為. 故所求切線方程為.即. 查看更多

 

題目列表(包括答案和解析)

設(shè)向量.

(Ⅰ)求

(Ⅱ)若函數(shù),求的最小值、最大值.

【解析】第一問(wèn)中,利用向量的坐標(biāo)表示,表示出數(shù)量積公式可得

第二問(wèn)中,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103361401546097_ST.files/image003.png">,即換元法

得到最值。

解:(I)

(II)由(I)得:

.

時(shí),

 

查看答案和解析>>

已知函數(shù)f(x)=x3-3ax2+b(a∈R,b∈R).
(I) 設(shè)a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 設(shè)a=-1,若方程f(x)=0在[-2,2]上有且僅有一個(gè)實(shí)數(shù)解,求b的取值范圍.

查看答案和解析>>

給出問(wèn)題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

解:(i)由余弦定理可得,

,

,

,

是直角三角形.

(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于

是等腰三角形.

綜上可知,是等腰直角三角形.

請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出你認(rèn)為本題正確的結(jié)果.           .

 

查看答案和解析>>

(本小題共l4分)

已知函數(shù)

   (I)設(shè)函數(shù),求的單調(diào)區(qū)間與極值;

   (Ⅱ)設(shè),解關(guān)于的方程

(Ⅲ)試比較的大。

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問(wèn)題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),;

當(dāng)時(shí),

當(dāng)b>2時(shí),;             ............8分

問(wèn)題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案