題目列表(包括答案和解析)
等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),;則的實(shí)軸長為( )
【解析】設(shè)等軸雙曲線方程為,拋物線的準(zhǔn)線為,由,則,把坐標(biāo)代入雙曲線方程得,所以雙曲線方程為,即,所以,所以實(shí)軸長,選C.
,,為常數(shù),離心率為的雙曲線:上的動點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線:的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線:(為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程
第二問中,為,,,
故直線的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,是方程的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程
(Ⅱ)設(shè)為,,,
故直線的方程為,即,
所以,同理可得:,
即,是方程的兩個不同的根,所以
由已知易得,即
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com