20.棱柱..為的中點.其直觀圖和三視圖如圖: 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)一個棱柱的三視圖(正視圖長為a,寬為
2
的矩形,俯視圖是長為a,寬為1的矩形,側視圖是直角邊長分別為1和
2
的直角三角形)和直觀圖如圖所示,其中G是棱DF的中點.M是棱AB上一點.
(1)若M是AB的中點,求證:AG∥平面FMC;
(2)若棱AB上存在唯一的一點M,使得∠FMC=90°,求a的值;
(3)在(2)的條件下,求二面角D-FC-M的大。

查看答案和解析>>

精英家教網(wǎng)一個棱柱的三視圖(正視圖長為a,寬為
2
的矩形,俯視圖是長為2,寬為1的矩形,側視圖是直角邊長分別為1和
2
的直角三角形)和直觀圖如圖所示,其中G是棱DF的中點.M是棱AB的中點.
(1)求證:AG∥平面FMC;
(2)求三棱錐F-MCE的體積;
(3)求證:平面CMF⊥平面FDM.

查看答案和解析>>

精英家教網(wǎng)一個棱柱的直觀圖和三視圖(主視圖和俯視圖是邊長為a的正方形,左視圖是直角邊長為a的等腰三角形)如圖所示,其中M、N分別是AB、AC的中點,G是DF上的一動點.
(Ⅰ)求證:GN⊥AC;
(Ⅱ)求三棱錐F-MCE的體積;
(Ⅲ)當FG=GD時,證明AG∥平面FMC.

查看答案和解析>>

一個棱柱的直觀圖和三視圖(主視圖和俯視圖是邊長為a的正方形,左視圖是直角邊長為a的等腰三角形)如圖所示,其中M、N分別是AB、AC的中點,G是DF上的一動點.
(Ⅰ)求證:GN⊥AC;
(Ⅱ)求三棱錐F-MCE的體積;
(Ⅲ)當FG=GD時,證明AG∥平面FMC.

查看答案和解析>>

一個棱柱的直觀圖和三視圖(主視圖和俯視圖是邊長為a的正方形,左視圖是直角邊長為a的等腰三角形)如圖所示,其中M、N分別是AB、AC的中點,G是DF上的一動點.
(Ⅰ)求證:GN⊥AC;
(Ⅱ)求三棱錐F-MCE的體積;
(Ⅲ)當FG=GD時,證明AG∥平面FMC.

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.A;    7.B;    8.D;    9.B;     10.D;

二.填空題 (本大題共7小題,每題4分,共28分)

11.;  12.; ;   14.,;  15.;  16.;  17.

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因為,所以,…………3分

    得

    所以…………………………………3分

(2)由,…………………………………2分

    ……………………2分

    ………………………………4分

19.解:(1)…………………2分

      當時,…………………2分

     ∴,即

    ∴是公比為3的等比數(shù)列…………………2分

(2)由(1)得:…………………2分

的公差為), ∵,∴………………2分

依題意有,

,得,或(舍去)………………2分

………………2分

 

20.解(1),

由三視圖知:側棱,,

………………2分

,又,∴   ①………………2分

為正方形,∴,又

 ②………………2分

由①②知平面………………2分

(2)取的中點,連結,由題意知,∴

由三視圖知:側棱,∴平面平面

平面

就是與面所成角的平面角………………3分

。故,又正方形

中,∴,∴

………………3分

綜上知與面所成角的大小的余弦值為

21.解(1)當,時,,………………1分

………………2分

∴當,此時為減函數(shù),………………1分

,些時為增函數(shù)………………1分

,

時,求函數(shù)的最大值………………2分

(2)………………1分

①當時,在,,

上為減函數(shù),∴,則

………………3分

②當時,

上為減函數(shù),則

上為增函數(shù),在上為減函數(shù),在上為增函數(shù),則

,∴………………3分

綜上可知,的取值范圍為………………1分

 

22.(1)記A點到準線距離為,直線的傾斜角為,

由拋物線的定義知,………………………2分

,

………………………3分

(2)設,

,………………………2分

,同理……………………2分

,…………………………2分

即:,

    ∴,…………………………2分

,得

得,

的取值范圍為…………………………2分

 

命題人

呂峰波(嘉興)  王書朝(嘉善)  王云林(平湖)

胡水林(海鹽)  顧貫石(海寧)  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強、吳林華

 

 

 


同步練習冊答案