題目列表(包括答案和解析)
某校從參加高二年級期末考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六段,…后畫出如下部分頻率分布直方圖,觀察圖形的信息,可知這次考試成績的平均分為
分 組 | 頻 數(shù) | 頻 率 |
[40,50 ) | 2 | 0.04 |
[50,60 ) | 3 | 0.06 |
[60,70 ) | 14 | 0.28 |
[70,80 ) | 15 | 0.30 |
[80,90 ) | ||
[90,100] | 4 | 0.08 |
合 計 |
某校從參加高三年級第一學期期末考試的學生中抽出50名學生,并統(tǒng)計了他們的數(shù)學成績(成績均為整數(shù),滿分為100分),將數(shù)學成績進行分組并根據(jù)各組人數(shù)制成如下頻率分布表:
(Ⅰ)將上面的頻率分布表補充完整,并估計本次考試全校85分以上學生的比例;
(Ⅱ)為了幫助成績差的同學提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921245043834846/SYS201206192126230476742014_ST.files/image001.png">中任出兩位同學,共同幫助成績在中的某一個同學,試列出所有基本事件;若同學成績?yōu)?3分,同學成績?yōu)?5分,求、兩同學恰好被安排在“二幫一”中同一小組的概率.
分 組[來源:Zxxk.Com] |
頻 數(shù) |
頻 率 |
[ 40, 50 ) |
2 |
0.04 |
[ 50, 60 ) |
3 |
0.06 |
[60, 70 ) |
14 |
0.28 |
[ 70, 80 ) |
15 |
0.30 |
[ 80, 90 ) |
|
|
[ 90, 100 ] |
4 |
0.08 |
合 計 |
|
|
分 組 | 頻 數(shù) | 頻 率 |
[40,50 ) | 2 | 0.04 |
[50,60 ) | 3 | 0.06 |
[60,70 ) | 14 | 0.28 |
[70,80 ) | 15 | 0.30 |
[80,90 ) | ||
[90,100] | 4 | 0.08 |
合 計 |
某校從參加高三年級第一學期期末考試的學生中抽出50名學生,并統(tǒng)計了他們的數(shù)學成績(成績均為整數(shù),滿分為100分),將數(shù)學成績進行分組并根據(jù)各組人數(shù)制成如下頻率分布表:
分 組 | 頻 數(shù) | 頻 率 |
[ 40, 50 ) | 2 | 0.04 |
[ 50, 60 ) | 3 | 0.06 |
[ 60, 70 ) | 14 | 0.28 |
[ 70, 80 ) | 15 | 0.30 |
[ 80, 90 ) | ||
[ 90, 100 ] | 4 | 0.08 |
合 計 |
(Ⅰ)將上面的頻率分布表補充完整,并估計本次考試全校85分以上學生的比例;
(Ⅱ)為了幫助成績差的同學提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績?yōu)?sub>中任選出兩位同學,共同幫助成績在中的某一個同學,試列出所有基本事件;若同學成績?yōu)?3分,同學成績?yōu)?5分,求、兩同學恰好被安排在“二幫一”中同一小組的概率.
一.選擇題 (本大題共10小題,每題5分,共50分)
1.C; 2.D; 3,A; 4.B; 5.B;
6.A; 7.B; 8.D; 9.B; 10.D;
二.填空題 (本大題共7小題,每題4分,共28分)
11.; 12.,; .; 14.,; 15.; 16.; 17..
三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)
18.解:(1)因為,所以,…………3分
得,
所以…………………………………3分
(2)由得,…………………………………2分
……………………2分
………………………………4分
19.解:(1)…………………2分
當時,…………………2分
∴,即
∴是公比為3的等比數(shù)列…………………2分
(2)由(1)得:…………………2分
設的公差為(), ∵,∴………………2分
依題意有,,
∴
,得,或(舍去)………………2分
故………………2分
20.解(1)面,
由三視圖知:側棱面,,
∴
∴面………………2分
∴,又,∴ ①………………2分
∵為正方形,∴,又
∴ ②………………2分
由①②知平面………………2分
(2)取的中點,連結,,由題意知,∴
由三視圖知:側棱面,∴平面平面
∴平面
∴就是與面所成角的平面角………………3分
,。故,又正方形中
在中,∴,∴
∴………………3分
綜上知與面所成角的大小的余弦值為
21.解(1)當,時,,………………1分
………………2分
∴當時,此時為減函數(shù),………………1分
當時,些時為增函數(shù)………………1分
由,
當時,求函數(shù)的最大值………………2分
(2)………………1分
①當時,在上,,
∵在上為減函數(shù),∴,則
或得………………3分
②當時,
∵在上為減函數(shù),則
∵在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),則
得又,∴………………3分
綜上可知,的取值范圍為………………1分
22.(1)記A點到準線距離為,直線的傾斜角為,
由拋物線的定義知,………………………2分
∴,
∴………………………3分
(2)設,,
由得,………………………2分
由得且
,同理……………………2分
由得,…………………………2分
即:,
∴,…………………………2分
,得且,
由且得,
的取值范圍為…………………………2分
命題人
呂峰波(嘉興) 王書朝(嘉善) 王云林(平湖)
胡水林(海鹽) 顧貫石(海寧) 張曉東(桐鄉(xiāng))
吳明華、張啟源、徐連根、洗順良、李富強、吳林華
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com