則命題...中真命題的是 ▲ . 查看更多

 

題目列表(包括答案和解析)

①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;

②若P且Q為假命題,則P、Q均為假命題;

③在△ABC中,sinA>sinB的充要條件是A>B;

④不等式的解集為|x|+|x-1|>a的解集為R,則a≤1;

⑤點(x,y)在映射f作用下的象是(2x,),則在f的作用下,點(1,-1)的原象是(0,2).其中真命題的是________(寫出所有真命題的編號)

查看答案和解析>>

15、給出下列命題:
①不存在實數(shù)a,b使f(x)=lg(x2+ax+b)的定義域、值域均為一切實數(shù);
②函數(shù)y=f(x+2)圖象與函數(shù)y=f(2-x)圖象關(guān)于直線x=2對稱;
③方程ln x+x=4有且只有一個實數(shù)根;
④a=-1是方程a2x2+(a+2)y2+2ax+a=0表示圓的充分必要條件
⑤過橢圓右焦點的直線與橢圓交于A,B兩點,則以AB為直徑的圓與其右準(zhǔn)線相離其中真命題的序號是
②、⑤
.(寫出所有真命題的序號)

查看答案和解析>>

下列五個命題,其中真命題的序號是
 
(寫出所有真命題的序號).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),當(dāng)m<-2時C表示橢圓.
(2)在橢圓
x2
45
+
y2
20
=1上有一點P,F(xiàn)1、F2是橢圓的左,右焦點,△F1PF2為直角三角形則這樣的點P有8個.
(3)曲線
x2
10-m
+
y2
6-m
=1(m<6)
與曲線
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)漸近線方程為y=±
b
a
x(a>0,b>0)
的雙曲線的標(biāo)準(zhǔn)方程一定是
x2
a2
-
y2
b2
=1

(5)拋物線y=ax2的焦點坐標(biāo)為(0,
1
4a
)

查看答案和解析>>

給出下列命題:
①、已知函數(shù)y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關(guān)于直線x=1對稱;
②、設(shè)函數(shù)f(x)=cos(x+φ),則“f(x)為偶函數(shù)”的充要條件是“f'(0)=0”;
③、等比數(shù)列{an}的前n項和為Sn,則“公比q>0”是“數(shù)列{Sn}單增”的充要條件;
④、實數(shù)x,y,則“
x-y≥0
y≥0
x+y≤2
”是“|2y-x|≤2”的充分不必要條件.
其中真命題有
①②④
①②④
(寫出你認為正確的所有真命題的序號).

查看答案和解析>>

給出下列命題:
①命題“所有的正方形都是矩形”的否定是“所有的正方形都不是矩形”;
②設(shè)p、q 為簡單命題,則“p且q”為假是“p或q為假的必要而不充分條件;
③函數(shù)的極小值為,極大值為;
④雙曲線的漸近線方程是,則該雙曲線的離心率是
⑤等差數(shù)列中首項為,則數(shù)列為等比數(shù)列;
其中真命題的序號為                (寫出所有真命題的序號)

查看答案和解析>>

一、選擇題(每小題5分,共50分)

二、填空題(每小題4分,共28分)

三、解答題

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達標(biāo)的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列為

3

4

5

                                                                      (12分)

所以的數(shù)學(xué)期望為                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標(biāo)系,則

A(0,,0,0),P(0,0,),C(,0),D(,0)

,,                  (6分)

易求為平面PAC的一個法向量.

為平面PDC的一個法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設(shè),則

   ,

解得點,即   (13分)

(不合題意舍去)或

所以當(dāng)的中點時,直線與平面所成角的正弦值為   (15分)

 

21.解:(Ⅰ)設(shè)直線的方程為:

,所以的方程為                     (4分)

點的坐標(biāo)為.

可求得拋物線的標(biāo)準(zhǔn)方程為.                                       (6分)

(Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得    (8分)     

設(shè)

設(shè),則

                                      (11分)

當(dāng)時上式是一個與無關(guān)的常數(shù).

所以存在定點,相應(yīng)的常數(shù)是.                                     (14分)

 

22.解:(Ⅰ)當(dāng)               (2分)

上遞增,在上遞減

所以在0和2處分別達到極大和極小,由已知有

,因而的取值范圍是.                                   (4分)

(Ⅱ)當(dāng)時,

      市一次模理數(shù)參答―3(共4頁)

                                              (7分)

      ,

      上遞減,在上遞增.

      從而上遞增

      因此                           (10分)

      (Ⅲ)假設(shè),即=

                                           (12分)

      ,(x)=0的兩根可得,

      從而有

      ≥2,這與<2矛盾.                                

      故直線與直線不可能垂直.                                               (15分)

       

       

       


      同步練習(xí)冊答案