(A) ①③ (B) ③④學 (C) ①②③ (D) ①③④學科 查看更多

 

題目列表(包括答案和解析)

學校計劃利用周五下午第一、二、三節(jié)課舉辦語文、數(shù)學、英語、理綜4科的專題講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學、理綜不安排在同一節(jié),則不同的安排方法共有                            (    )

A.36種 B.30種 C.24種 D.6種

查看答案和解析>>

學校計劃利用周五下午第一、二、三節(jié)課舉辦語文、數(shù)學、英語、理綜4科的專題 講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學、理綜不安排在同一節(jié),則不同的安 排方法共有( 。
A.36 種B.30 種C.24 種D.6 種

查看答案和解析>>

學校計劃利用周五下午第一、二、三節(jié)課舉辦語文、數(shù)學、英語、理綜4科的專題 講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學、理綜不安排在同一節(jié),則不同的安 排方法共有( )
A.36 種
B.30 種
C.24 種
D.6 種

查看答案和解析>>

學校為制訂2008年高考工作計劃,決定對我校明年參加高考的考生進行摸底,需要從應屆理科、應屆文科及補習班的同學中選取部分同學進行問卷調查,應該采取的抽樣方法是

A.分層抽樣                                                  B.抽簽法                  

C.隨機數(shù)表法                                               D.以上三種方法都可以

查看答案和解析>>

科學家發(fā)現(xiàn),兩顆恒星A、B分別與地球相距5億光年、2億光年,且從地球上觀測,它們的張角為60°,則這兩顆恒星之間的距離為

[  ]
A.

億光年

B.

億光年

C.

2億光年

D.

2億光年

查看答案和解析>>

一、選擇題(每小題5分,共50分)

二、填空題(每小題4分,共28分)

三、解答題

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同學甲同學恰好投4次達標的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列為

3

4

5

                                                                      (12分)

所以的數(shù)學期望為                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標系,則

A(0,,0,0),P(0,0,),C(,0),D(,0)

,,                  (6分)

易求為平面PAC的一個法向量.

為平面PDC的一個法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設,則

   ,

解得點,即   (13分)

(不合題意舍去)或

所以當的中點時,直線與平面所成角的正弦值為   (15分)

 

21.解:(Ⅰ)設直線的方程為:

,所以的方程為                     (4分)

點的坐標為.

可求得拋物線的標準方程為.                                       (6分)

(Ⅱ)設直線的方程為,代入拋物線方程并整理得    (8分)     

,則

                                      (11分)

時上式是一個與無關的常數(shù).

所以存在定點,相應的常數(shù)是.                                     (14分)

 

22.解:(Ⅰ)當               (2分)

上遞增,在上遞減

所以在0和2處分別達到極大和極小,由已知有

,因而的取值范圍是.                                   (4分)

(Ⅱ)當時,

    1. <span id="iie9k"></span>
      • <mark id="iie9k"><pre id="iie9k"><output id="iie9k"></output></pre></mark>

        市一次模理數(shù)參答―3(共4頁)

                                                (7分)

        ,

        上遞減,在上遞增.

        從而上遞增

        因此                           (10分)

        (Ⅲ)假設,即=

        ,

                                             (12分)

        (x)=0的兩根可得,

        從而有

        ≥2,這與<2矛盾.                                

        故直線與直線不可能垂直.                                               (15分)

         

         

         


        同步練習冊答案