.已知點(diǎn).到直線的有向距離分別是..有以下命題: 查看更多

 

題目列表(包括答案和解析)

定義點(diǎn)P(x0,y0)到直線l:ax+by+c=0(a2+b2≠0)的有向距離為:.已知點(diǎn)P1、P2到直線l的有向距離分別是d1、d2,有以下命題:

①若d1-d2=0,則直線P1P2與直線l平行;②若d1+d2=0,則直線P1P2與直線l平行;③若d1+d2=0,則直線P1P2與直線l垂直;④若d1d2<0,則直線P1P2與直線l相交.以上結(jié)論正確的是________.(要求填上正確結(jié)論的序號(hào))

查看答案和解析>>

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長(zhǎng)F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量夾角為銳角θ,且滿足 ,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為   

查看答案和解析>>

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長(zhǎng)F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為
 

查看答案和解析>>

第I卷(選擇題共50分)

一、選擇題:本大題共10個(gè)小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中有且只有一項(xiàng)是符合題目要求的.

題號(hào)

1

2

3

4

5

6

7

8

9

10

總分

答案

D

B

C

C

C

D

B

D

B

D

 

第Ⅱ卷(非選擇題共100分)

二、填空題:本大題共7個(gè)小題,每小題4分,共28分,將答案填寫在題中的橫線上.

    11.  0                          12.                    

    13.     -1                       14.            

15.                16.                 17.___ ④____

三、解答題:本大題共5個(gè)小題,第18-21題每小題14分,第22題16分,共72分,解答應(yīng)寫出文字說明,證明過程或演算步驟

18、數(shù)列滿足:

(Ⅰ)記,求證:是等比數(shù)列;(Ⅱ)求數(shù)列的通項(xiàng)公式;

解:(Ⅰ)

,是等比數(shù)列;

(Ⅱ)

19、如圖,平面四邊形ABCD中, AB=13, AC=10, AD=5,,=120,

(Ⅰ) 求;  (Ⅱ) 設(shè)求實(shí)數(shù)x、y的值.

解:(Ⅰ)設(shè)

(Ⅱ)

(其他方法解對(duì)同樣給分)

20、如圖,正三棱柱ABCA1B1C1的各棱長(zhǎng)都相等,D、E分別是CC1AB1的中點(diǎn),點(diǎn)FBC上且滿足BFFC=1∶3 

(Ⅰ)若MAB中點(diǎn),求證  BB1∥平面EFM;

(Ⅱ)求證  EFBC;

(Ⅲ)求二面角A1B1DC1的大小 

(1)    證明 連結(jié)EMMF,∵M、E分別是正三棱柱的棱AB

AB1的中點(diǎn),

BB1ME,又BB1平面EFM,∴BB1∥平面EFM 

(2)證明  取BC的中點(diǎn)N,連結(jié)AN由正三棱柱得  ANBC,

BFFC=1∶3,∴FBN的中點(diǎn),故MFAN

MFBC,而BCBB1BB1ME 

MEBC,由于MFME=M,∴BC⊥平面EFM,

EF平面EFM,∴BCEF 

(3)解  取B1C1的中點(diǎn)O,連結(jié)A1O知,A1O⊥面BCC1B1,由點(diǎn)OB1D的垂線OQ,垂足為Q,連結(jié)A1Q,由三垂線定理,A1QB1D,故∠A1QD為二面角A1B1DC的平面角,易得∠A1QO=arctan 

(建立坐標(biāo)系解對(duì)同樣給分)

21、已知點(diǎn)D在定線段MN上,且|MN|=3,|DN|=1,一個(gè)動(dòng)圓C過點(diǎn)D且與MN相切,分別過M、N作圓C的另兩條切線交于點(diǎn)P.

(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求點(diǎn)P的軌跡方程;

(Ⅱ)過點(diǎn)M作直線l與所求軌跡交于兩個(gè)不同的點(diǎn)A、B,

,且λ∈[2-,2+],記直線l

與直線MN夾角為θ,求的取值范圍.

解:(Ⅰ)以直線MN為x軸,MN的中點(diǎn)為坐標(biāo)原點(diǎn)O,

建立直角坐標(biāo)系xOy. 

∵PM-PN=(PE+EM)-(PF+FN)=MD-ND=1

或PM-PN=(PE+EM)-(PF+FN)=MD-ND=-1

∴點(diǎn)P的軌跡是以M、N為焦點(diǎn),實(shí)軸長(zhǎng)為1的雙曲線(不包含頂點(diǎn)),

其軌跡方程為(y≠0) 

(Ⅱ)設(shè)A(x1,y1),B(x2,y2),則=(x1+2,y1),=(x2+2,y2)

設(shè)AB:my=x+,代入得,3(my-)2-y2-2=0,

即(8m2-1)y2-24my+16=0.

 =λ,y1=-λy2,∴ 

得,,

∈[-2,0],即

 ,故

22、已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),有

(其中為自然對(duì)數(shù)的底,).

(Ⅰ)若,求函數(shù)的解析式;

(Ⅱ)試問:是否存在實(shí)數(shù),使得當(dāng),的最小值是?如果存在,求出實(shí)數(shù)的值;如果不存在,請(qǐng)說明理由.

(Ⅲ)設(shè)),求證:當(dāng)時(shí),

解:(Ⅰ)當(dāng)時(shí),,故有,由此及是奇函數(shù)得,因此,函數(shù)的解析式為;

(Ⅱ)當(dāng)時(shí),

①若,則在區(qū)間上是減函數(shù),故此時(shí)函數(shù)在區(qū)間上沒有最小值;

②若,則令,且在區(qū)間上是減函數(shù),而在區(qū)間上是增函數(shù),故當(dāng)時(shí),

綜上所述,當(dāng)時(shí),函數(shù)在區(qū)間上的最小值是3.

(Ⅲ)證明:令。當(dāng)時(shí),注意到,故有

       ①當(dāng)時(shí),注意到,故

;

       ②當(dāng)時(shí),有,故函數(shù)在區(qū)間上是增函數(shù),從而有

。

       因此,當(dāng)時(shí),有。

       又因?yàn)?sub>是偶函數(shù),故當(dāng)時(shí),同樣有,即

       綜上所述,當(dāng)時(shí),有;

 


同步練習(xí)冊(cè)答案