∴直線與平面所成的角為. ---------------10分 查看更多

 

題目列表(包括答案和解析)

已知PA,PB,PC與平面α所成的角分別為60°,45°,30°,PO⊥平面α,O為垂足,又斜足A,B,C三點在同一直線上,且AB=BC=10 cm,求PO的長.

查看答案和解析>>

(本小題滿分10分)如圖,在中,為AC邊上的高,沿BD將翻折,使得得到幾何體

(I)求證:AC^平面BCD;

 (Ⅱ)求異面直線AB與CD所成角的正切值.

 

查看答案和解析>>

(本小題滿分10分)如圖,在中,為AC邊上的高,沿BD將翻折,使得得到幾何體
(I)求證:AC^平面BCD;
(Ⅱ)求異面直線AB與CD所成角的正切值.

查看答案和解析>>

夾在直二面角兩個半平面間的一條直線段與兩個平面所成的角分別為30°和45°,如果這條線段的長是5,則它的兩端點在二面角棱上的射影間的距離為   

[  ]

A2.5   B5   C10   D8

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>


同步練習冊答案