= (nÎZ+). ----------- 8分 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分14分)已知函數(shù),設(shè)曲線(xiàn)yfx)在點(diǎn)(xn,fxn))處的切線(xiàn)與x軸的交點(diǎn)為(xn+1,0)(n Î N *),x1=4.

(Ⅰ)用表示xn+1;

(Ⅱ)記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;

(Ⅲ)若bnxn-2,試比較的大。

 

查看答案和解析>>

(14分)已知函數(shù)的圖象過(guò)原點(diǎn),且關(guān)于點(diǎn)(-1,1)成中心對(duì)稱(chēng).(1)求函數(shù)的解析式;(2) 若數(shù)列(nÎN*)滿(mǎn)足:,求數(shù)列的通項(xiàng)公式.

 

查看答案和解析>>

(04年浙江卷理)如圖,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線(xiàn)段BC的中點(diǎn),P2為線(xiàn)段CO的中點(diǎn),P3為線(xiàn)段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線(xiàn)段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.
(1)求a1,a2,a3an
(2)證明,nÎN*;
(3)若記bn=y4n+4-y4n,nÎN*,證明{bn}是等比數(shù)列。

查看答案和解析>>

(本題滿(mǎn)分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;

(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意nÎN+bn<成立. 若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

已知數(shù)列 {an}(n Î N)中,a1 = 1,an+1 = ,則an 為:

A.2n-1       B.2n + 1       C.     D.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案