當(dāng)時(shí).在上遞減.最大無限接近.無最大值和最小值-----------12分 查看更多

 

題目列表(包括答案和解析)

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時(shí),極大值為,無極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè)

對(duì)求導(dǎo),得

    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(

 

查看答案和解析>>

已知函數(shù)f(x)=sin2x+2
3
sin(x+
π
4
)cos(x-
π
4
)-cos2x-
3

(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-
π
12
,
25
36
π]
上的最大值和最小值并指出此時(shí)相應(yīng)的x的值.

查看答案和解析>>

已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減
(1)求a的值;
(2)在區(qū)間[-2,2]上,試求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

函數(shù)f(x)=x+
9x
(x>0)
(Ⅰ)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間,并給出證明;
(Ⅱ)寫出函數(shù)f(x)的單調(diào)遞減區(qū)間,不必證明;
(Ⅲ)求f(x)在區(qū)間[1,5]上的最大值和最小值及相應(yīng)的x的值.

查看答案和解析>>

已知a為實(shí)數(shù),f(x)=x3-ax2-9x.
(1)求導(dǎo)數(shù)f'(x);
(2)若f'(-1)=0,求f(x)在[-1,1]上的最大值和最小值;
(3)若f(x)在[-1,1]上是遞減的,求a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案