題目列表(包括答案和解析)
設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設點P的坐標為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為.
由P在橢圓上,有
因為,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
甲船由島出發(fā)向北偏東的方向作勻速直線航行,速度為海里∕小時,在甲船從島出發(fā)的同時,乙船從島正南海里處的島出發(fā),朝北偏東的方向作勻速直線航行,速度為海里∕小時。
⑴求出發(fā)小時時兩船相距多少海里?
⑴ 兩船出發(fā)后多長時間相距最近?最近距離為多少海里?
【解析】第一問中根據(jù)時間得到出發(fā)小時時兩船相距的海里為
第二問設時間為t,則
利用二次函數(shù)求得最值,
解:⑴依題意有:兩船相距
答:出發(fā)3小時時兩船相距海里
⑵兩船出發(fā)后t小時時相距最近,即
即當t=4時兩船最近,最近距離為海里。
已知數(shù)列是公差不為零的等差數(shù)列,,且、、成等比數(shù)列。
⑴求數(shù)列的通項公式;
⑵設,求數(shù)列的前項和。
【解析】第一問中利用等差數(shù)列的首項為,公差為d,則依題意有:
第二問中,利用第一問的結(jié)論得到數(shù)列的通項公式,
,利用裂項求和的思想解決即可。
1 |
2 |
∫ | n 0 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com