C.7 D. 查看更多

 

題目列表(包括答案和解析)

(7)設(shè)A,B,C,D是空間四個不同的點.在下列命題中,不正確的是

   (A)若AC與BD共面,則AD與BC共面

   (B)若AC與BD是異面直線,則AD與BC是異面直線

   (C)若AB=AC,DB=DC,則AD=BC

   (D)若AB=AC,DB=DC,則AD⊥BC

查看答案和解析>>

(7)已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,其首項分別為al、bl,且a1+b1=5,a1、b1∈N*.設(shè)cn= (n∈N*),則數(shù)列{cn}的前10項和等于

    (A)55         (B)70                (C)85               (D)100

查看答案和解析>>

.P是雙曲線的右支上一點,M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點,則|PM|-|PN|的最大值為(    )

A. 6              B.7              C.8                D.9

 

查看答案和解析>>

.P是雙曲線的右支上一點,M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點,則|PM|-|PN|的最大值為(    )

A. 6              B.7              C.8                D.9

 

查看答案和解析>>

.將正奇數(shù)按下表排列:      1    3   

                             5    7    9   

                             11   13   15   17

                             …   …   …

則199在

A.第11行    B.第12行      C.第10列       D.第11列

 

查看答案和解析>>

一、選擇題:(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

A

C

C

C

A

A

B

二、填空題:(每小題4分,共24分)

11.     12.4       13.      14.     15.4   16.

三、解答題:(共76分,以下各題為累計得分,其他解答請相應給分)

17.解:(I)

          

        由,得

        又當,得

       

       (Ⅱ)當

        即時函數(shù)遞增。

        故的單調(diào)增區(qū)間為,

18.解:(I)各取1個球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)

(白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2

(白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1

(黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)

等30種情況

其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,

故1白1黑的概率為

   (Ⅱ)2紅有2種,2白有4種,2黑有3種,

故兩球顏色相同的概率為

   (Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,

故至少有1個紅球的概率為

19.解:(I)側(cè)視圖   (高4,底2

       

   (Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,

面PAB

又AC面PAC,面PAC面PAB

   (Ⅲ)面ABC,為直線PC與底面ABC所成的角

中,PA=4,AC=,,

20.解:(I)由題意設(shè)C的方程為,得

   

    設(shè)直線的方程為,由

    ②代入①化簡整理得  

    因直線與拋物線C相交于不同的兩點,

    故

    即,解得時僅交一點,

   (Ⅱ)設(shè),由由(I)知

   

   

   

21.解:(I)   由

于是

切線方程為,即

   (Ⅱ)令,解得

    ①當時,即時,在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而

    ②當,即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而

    ③當時,內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為的較大者。

    由,得,故當時,

    當時,

22.解:(I)設(shè)的首項為,公差為d,于是由

        解得       

       (Ⅱ)

        由  ①

        得     ②

        ①―②得   即

        當時,,當時,

       

        于是

        設(shè)存在正整數(shù),使對恒成立

        當時,,即

        當時,

       

        時,時,,當時,

        存在正整數(shù)或8,對于任意正整數(shù)都有成立。

www.ks5u.com

 

 


同步練習冊答案