當(dāng)時(shí). .因?yàn)槭枪顬榈牡炔顢?shù)列. 查看更多

 

題目列表(包括答案和解析)

已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對(duì)任意,成立.

 

查看答案和解析>>

選擇題.

(1),確定的等差數(shù)列,當(dāng)時(shí),序號(hào)n等于

[ 。

(A)99

(B)100

(C)96

(D)101

(2)一個(gè)蜂巢里有1只蜜蜂.第1天,它飛出去找回了5個(gè)伙伴;第2天,6只蜜蜂飛出去,各自找回了5個(gè)伙伴……如果這個(gè)找伙伴的過(guò)程繼續(xù)下去,第6天所有的蜜蜂都?xì)w巢后,蜂巢中一共有(  )只蜜蜂.

[  ]

(A)55986

(B)46656

(C)216

(D)36

(3)預(yù)測(cè)人口的變化趨勢(shì)有多種方法,“直接推算法”使用的公式是,其中為預(yù)測(cè)期人口數(shù),為初期人口數(shù),k為預(yù)測(cè)期內(nèi)年增長(zhǎng)率,n為預(yù)測(cè)期間隔年數(shù).如果在某一時(shí)期有-1k0,那么在這期間人口數(shù)

[  ]

(A)呈上升趨勢(shì).

(B)呈下降趨勢(shì).

(C)擺動(dòng)變化.

(D)不變.

(4)《萊因德紙草書(shū)》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書(shū)中有一道這樣的題目:把100個(gè)面包分給5個(gè)人,使每人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,問(wèn)最小1份為

[  ]

(A)

(B)

(C)

(D)

查看答案和解析>>

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足

,

第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問(wèn),

     若成等比數(shù)列,則,

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>


同步練習(xí)冊(cè)答案