題目列表(包括答案和解析)
已知的三個內(nèi)角所對的邊分別為,且滿足.
(1)求角的大小;
(2)若,的面積為,求的值.
【解析】本試題主要是考查了解三角形中正弦定理和正弦面積公式的求解運用。
(1)因為,利用正弦定理得到C的值。
(2)根據(jù),然后結合余弦定理得到C的值。
已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是
(A)(1-,2) (B)(0,2) (C)(-1,2) (D)(0,1+)
【解析】 做出三角形的區(qū)域如圖,由圖象可知當直線經(jīng)過點B時,截距最大,此時,當直線經(jīng)過點C時,直線截距最小.因為軸,所以,三角形的邊長為2,設,則,解得,,因為頂點C在第一象限,所以,即代入直線得,所以的取值范圍是,選A.
設不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC頂點C的軌跡方程;
(Ⅱ)設頂點C的軌跡為D,已知直線過點(0,1)并且與曲線D交于P、N兩點,若O為坐標原點,滿足OP⊥ON,求直線的方程.
【解析】
第一問因為設C(x,y)()
……3分
∵M是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)
由(1)(2)得.所以三角形頂點C的軌跡方程為,.…6分
第二問直線l的方程為y=kx+1
由消y得。 ∵直線l與曲線D交于P、N兩點,∴△=,
又,
∵,∴
得到直線方程。
如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點,PE=2EC。
(I) 證明PC平面BED;
(II) 設二面角A-PB-C為90°,求PD與平面PBC所成角的大小
【解析】本試題主要是考查了四棱錐中關于線面垂直的證明以及線面角的求解的運用。
從題中的線面垂直以及邊長和特殊的菱形入手得到相應的垂直關系和長度,并加以證明和求解。
解法一:因為底面ABCD為菱形,所以BDAC,又
【點評】試題從命題的角度來看,整體上題目與我們平時練習的試題和相似,底面也是特殊的菱形,一個側面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學生來說就是比較有點難度的,因此最好使用空間直角坐標系解決該問題為好。
在棱長為的正方體中,是線段的中點,.
(1) 求證:^;
(2) 求證://平面;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定為平行四邊形,然后,可知結論成立。
第三問中,是邊長為的正三角形,其面積為,
因為平面,所以,
所以是直角三角形,其面積為,
同理的面積為, 面積為. 所以三棱錐的表面積為.
解: (1)證明:根據(jù)正方體的性質(zhì),
因為,
所以,又,所以,,
所以^. ………………4分
(2)證明:連接,因為,
所以為平行四邊形,因此,
由于是線段的中點,所以, …………6分
因為面,平面,所以∥平面. ……………8分
(3)是邊長為的正三角形,其面積為,
因為平面,所以,
所以是直角三角形,其面積為,
同理的面積為, ……………………10分
面積為. 所以三棱錐的表面積為
1.(共12 分)解:(I),,
= ?
2分
4分
= . 5分
又 6分
函數(shù)的最大值為. 7分
當且僅當(Z)時,函數(shù)取得最大值為.
(II)由(Z), 9分
得 (Z). 11分
函數(shù)的單調(diào)遞增區(qū)間為[](Z). 12
2.解:(Ⅰ) 選手甲答道題進入決賽的概率為; ……………1分
選手甲答道題進入決賽的概率為;…………………………3分
選手甲答5道題進入決賽的概率為; …………………5分
∴選手甲可進入決賽的概率++. …………………7分
(Ⅱ)依題意,的可能取值為.則有,
,
, …………………………10分
因此,有
ξ
3
4
5
P
. ……………………………12分
3.(共12分)解法一:
解:(Ⅰ)且平面.-------------2分
為在平面內(nèi)的射影. --------3分
又⊥, ∴⊥. ----------4分
(Ⅱ) 由(Ⅰ)⊥,又⊥,
∴為所求二面角的平面角. -------6分
又∵==4,
∴=4 . ∵=2 , ∴=60°. -------8分
即二面角大小為60°.
(Ⅲ)過作于D,連結,
由(Ⅱ)得平面平面,又平面,
∴平面平面,且平面平面,
∴平面.
∴為在平面內(nèi)的射影.
. --------10分
在中,,
在中,,.
∴ =. ------------11分
所以直線與平面所成角的大小為. ----12分
解法二:解:(Ⅰ)由已知,
以點為原點,建立如圖所示的空間直角坐標系.
則 ,. -------2分
則,.
.
. ----------------4分
(Ⅱ),平面.
是平面的法向量. -------5分
設側面的法向量為,
,.
,
.令則.
則得平面的一個法向量. ---------6分
.
即二面角大小為60°. ----------8分
(Ⅲ)由(II)可知是平面的一個法向量. --------10分
又, . -----11分
所以直線與平面所成角為 ---------12分
4.解:(I)函數(shù)
當 …………2分
當x變化時,的變化情況如下:
―
0
+
極小值
由上表可知,函數(shù);
單調(diào)遞增區(qū)間是
極小值是 …………6分
(II)由 …………7分
又函數(shù)為[1,4]上單調(diào)減函數(shù),
則在[1,4]上恒成立,所以不等式在[1,4]上恒成立.
即在[1,4]上恒成立. …………10分
又在[1,4]為減函數(shù),
所以
所以 …………12分
5.解:橢圓的左、右焦點分別為、 , ……2分
又, , ………3分
解得,
橢圓的方程為 . ………4分
(Ⅱ)由,得.
設點、的坐標分別為、,則……5分
.
(1)當時,點、關于原點對稱,則.
(2)當時,點、不關于原點對稱,則,
由,得 即
點在橢圓上,有,
化簡,得.
,有.………………① ……………7分
又,
由,得.……………………………②
將①、②兩式,得.
,,則且.
綜合(1)、(2)兩種情況,得實數(shù)的取值范圍是. ………………8分
(Ⅲ),點到直線的距離,
的面積
. ………………………… 10分
由①有,代入上式并化簡,得.
,. ……………………… 11分
當且僅當,即時,等號成立.
當時,的面積最大,最大值為. ……………………… 12分
6.解:(1)
……………………4分
(2)的對稱軸垂直于x軸,且頂點為Pn,
∴設的方程為
把,
∴的方程為
∵……………………6分
∴
∴
=…………………………8分
(3)
∴S中最大數(shù)a1=-17.…………………………10分
設公差為d,則a10=
由此得
又∵∴∴
∴……………………12分
本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn
2009屆新課標數(shù)學考點預測(26):函數(shù)與方程的思想方法
《2009年新課標考試大綱》明確指出“數(shù)學知識是指《普通高中數(shù)學課程標準(實驗)》中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學思想方法”。其中數(shù)學思想方法包括: 函數(shù)與方程的思想方法、 數(shù)形結合的思想方法 、 分類整合的思想方法、 特殊與一般的思想方法、 轉(zhuǎn)化與化歸的思想方法、 必然與或然的思想方法。數(shù)學思想方法是對數(shù)學知識內(nèi)容和方法的本質(zhì)認識,是對數(shù)學的規(guī)律性的理性認識。高考通過對數(shù)學思想方法的考查,能夠最有效地檢測學生對數(shù)學知識的理解和掌握程度,能夠最有效地反映出學生對數(shù)學各部分內(nèi)容的銜接、綜合和滲透的能力。《考試大綱》對數(shù)學考查的要求是“數(shù)學學科的系統(tǒng)性和嚴密性決定了數(shù)學知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構建數(shù)學試卷的框架結構” 。而數(shù)學思想方法起著重要橋梁連接和支稱作用,“對數(shù)學思想方法的考查是對數(shù)學知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學知識相結合,通過數(shù)學知識的考查,反映考生對數(shù)學思想方法的掌握程度” ! 數(shù)學科的命題,在考查基礎知識的基礎上,注重對數(shù)學思想方法的考查,注重對數(shù)學能力的考查,展現(xiàn)數(shù)學的科學價值和人文價值,同時兼顧試題的基礎性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學素養(yǎng)的要求! 數(shù)學的思想方法滲透到數(shù)學的各個角落,無處不在,有些題目還要考查多個數(shù)學思想。在高考復習時,要充分認識數(shù)學思想在提高解題能力的重要性,在復習中要有意識地滲透這些數(shù)學思想,提升數(shù)學思想。
一、函數(shù)與方程的思想
所謂函數(shù)的思想,就是用運動和變化的觀點、集合對應的思想,去分析和研究數(shù)學問題中的數(shù)量關系,建立函數(shù)關系或構造函數(shù)。運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決,函數(shù)思想是對函數(shù)概念的本質(zhì)認識,用于指導解題就是要善于利用函數(shù)知識或函數(shù)觀點去觀察分析處理問題。
所謂方程的思想就是分析數(shù)學問題中變量間的等量關系,建立方程或方程組,或者構造方程,通過解方程(組),或者運用方程的性質(zhì)去分析轉(zhuǎn)化問題使問題獲得解決,方程思想是對方程概念的本質(zhì)認識,用于指導解題就是利用方程或方程觀點觀察處理問題。函數(shù)思想與方程思想是密不可分的,可以相互轉(zhuǎn)化的。
函數(shù)和方程的思想是最重要和最常用的數(shù)學思想,它貫穿于整個高中教學中,中學數(shù)學中的初等函數(shù)、三角函數(shù)、數(shù)列以及解析幾何都可以歸結為函數(shù),尤其是導數(shù)的引入為函數(shù)的研究增添了新的工具.因此,在數(shù)學教學中注重函數(shù)與方程的思想是相當重要的.在高考中,函數(shù)與方程的思想也是作為思想方法的重點來考查的,使用選擇題和填空題考查函數(shù)與方程思想的基本運算,而在解答題中,則從更深的層次,在知識的網(wǎng)絡的交匯處,從思想方法與相關能力相綜合的角度進行深入考查。
1、利用函數(shù)與方程的性質(zhì)解題
例1.(2008安徽卷,理,11)若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有( )
A. B.
C.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com