題目列表(包括答案和解析)
(本小題滿分13分)已知函數(shù)
(I)當(dāng)0< a < b,且f(a) = f(b)時,求的值;
(II)若存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域為 [a,b]時,值域為 [ma,mb](m≠0).求m的取值范圍.
(本小題滿分14分) 已知函數(shù),(x>0).
(1)當(dāng)0<a<b,且f(a)=f(b)時,求的值 ;
(2)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,求出a,b的值,若不存在,請說明理由.
(3)若存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域為 [a,b]時,值域為 [ma,mb],(m≠0),求m的取值范圍.
(14分)已知函數(shù),( x>0).
(I)當(dāng)0<a<b,且f(a)=f(b)時,求證:ab>1;
(II)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請說明理由.
(III)若存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域為 [a,b]時,值域為 [ma,mb]
(m≠0),求m的取值范圍.
已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1, 關(guān)于x的方程:
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)
已知函數(shù),.
(Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)若方程有唯一解,求實數(shù)的值.
【解析】第一問,
當(dāng)0<x<2時,,當(dāng)x>2時,,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時,在上均為增函數(shù)
(Ⅱ)中方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時,方程有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時,,當(dāng)x>2時,,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時,在上均為增函數(shù) ……………6分
(Ⅱ)方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時,方程有唯一解
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
B
D
C
C
D
B
A
A
B
C
二、填空題:
13.2x 14. x=-1 15.k2=2.143 沒有 16.(-∞,-3]
三、解答題:
17.(1)z=1+i |z|= (2分)
(2)a=0,b=1 (4分)
18.綜合法、分析法均可(略)
19.(1)依題意有:解得a=1,b=-3(3分)
(2)f(x)=x3-3x f′(x)=3x2-3
當(dāng)f′(x)>0,即x>1或x<-1,∴單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞)
當(dāng)f′(x)>0,-1<x<1,∴單調(diào)遞減區(qū)間為(-1,1) (5分)
20.(1)a1=,a2=,a3=,a4= (2分)
(2)an= (3分)
(3)Sn=1- (5分)
21.解:依題意,直線斜率顯然存在,設(shè)直線斜率為k,則直線的方程為:y+1=kx
拋物線y=-與直線相交于A、B兩點
∴x2+2kx-2=0,∴△=4k2+8>0,
設(shè)A(x1,x2),B(x2,y2) 則x1+x2=-2k
∵kOA+KOB=1 ∴
∴即x1+x2=-2=-2k∴k=1
22.(1)a=1,b=3
(2)∵f(x)=x3+3x2在[m,m+1]上單調(diào)遞增
∴f′(x)=3x2+6x≥0,在[m,m+1]上
∵3x2+6x≥0, ∴x≥0或x≤-2
∴m+1≤-2或m≥0即m≤-3或m≥0
∴m的取值范圍是{m|m≤-3或m≥0}
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com