7.當0<m<1時.z=對應的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)已知函數(shù)

   (I)當0< a < b,且fa) = fb)時,求的值;

   (II)若存在實數(shù)a,ba<b),使得函數(shù)y=fx)的定義域為 [a,b]時,值域為 [ma,mb](m≠0).求m的取值范圍.

 

查看答案和解析>>

(本小題滿分14分) 已知函數(shù),(x>0).

(1)當0<a<b,且f(a)=f(b)時,求的值  ;   

(2)是否存在實數(shù)aba<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,求出ab的值,若不存在,請說明理由.

(3)若存在實數(shù)a,ba<b),使得函數(shù)y=f(x)的定義域為 [a,b]時,值域為 [ma,mb],(m≠0),求m的取值范圍.

 

 

 

查看答案和解析>>

(14分)已知函數(shù),( x>0).

(I)當0<a<b,且f(a)=f(b)時,求證:ab>1;

(II)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請說明理由.

(III)若存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域為 [a,b]時,值域為 [ma,mb]

(m≠0),求m的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.

(1)求n,m的關系式并求f(x)的單調減區(qū)間;

(2)證明:對任意實數(shù)0<x1<x2<1, 關于x的方程:

在(x1,x2)恒有實數(shù)解

(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內導數(shù)都存在,則在(a,b)內至少存在一點x0,使得.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:

當0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導性)

查看答案和解析>>

已知函數(shù),

(Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若方程有唯一解,求實數(shù)的值.

【解析】第一問,   

當0<x<2時,,當x>2時,

要使在(a,a+1)上遞增,必須

如使在(a,a+1)上遞增,必須,即

由上得出,當,上均為增函數(shù)

(Ⅱ)中方程有唯一解有唯一解

  (x>0)

隨x變化如下表

x

-

+

極小值

由于在上,只有一個極小值,的最小值為-24-16ln2,

當m=-24-16ln2時,方程有唯一解得到結論。

(Ⅰ)解: 

當0<x<2時,,當x>2時,,

要使在(a,a+1)上遞增,必須

如使在(a,a+1)上遞增,必須,即

由上得出,當上均為增函數(shù)  ……………6分

(Ⅱ)方程有唯一解有唯一解

  (x>0)

隨x變化如下表

x

-

+

極小值

由于在上,只有一個極小值,的最小值為-24-16ln2,

當m=-24-16ln2時,方程有唯一解

 

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

B

D

C

C

D

B

A

A

B

C

 

二、填空題:

13.2x    14. x=-1    15.k2=2.143  沒有   16.(-∞,-3]

三、解答題:

17.(1)z=1+i    |z|=    (2分)

(2)a=0,b=1             (4分)

18.綜合法、分析法均可(略)

19.(1)依題意有:解得a=1,b=-3(3分)

  (2)f(x)=x3-3x   f′(x)=3x2-3

當f′(x)>0,即x>1或x<-1,∴單調遞增區(qū)間為(-∞,-1),(1,+∞)

當f′(x)>0,-1<x<1,∴單調遞減區(qū)間為(-1,1)                   (5分)

20.(1)a1=,a2=,a3=,a4=       (2分)

(2)an=                         (3分)

(3)Sn=1-                    (5分)

21.解:依題意,直線斜率顯然存在,設直線斜率為k,則直線的方程為:y+1=kx

拋物線y=-與直線相交于A、B兩點

x2+2kx-2=0,∴△=4k2+8>0,

設A(x1,x2),B(x2,y2) 則x1+x2=-2k

∵kOA+KOB=1     ∴

即x1+x2=-2=-2k∴k=1

22.(1)a=1,b=3

  (2)∵f(x)=x3+3x2在[m,m+1]上單調遞增

     ∴f′(x)=3x2+6x≥0,在[m,m+1]上

     ∵3x2+6x≥0, ∴x≥0或x≤-2

     ∴m+1≤-2或m≥0即m≤-3或m≥0

     ∴m的取值范圍是{m|m≤-3或m≥0}

 


同步練習冊答案