題目列表(包括答案和解析)
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在,有?請(qǐng)說明理由;
(Ⅱ)若(a、q為常數(shù),且aq0)對(duì)任意m存在k,有,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請(qǐng)證明.
【解析】第一問中,由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)中當(dāng)時(shí),則
即,其中是大于等于的整數(shù)
反之當(dāng)時(shí),其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理
當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)當(dāng)時(shí),則即,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理
當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),
由,得
當(dāng)為奇數(shù)時(shí),此時(shí),一定有和使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立
已知正數(shù)數(shù)列{an }中,a1 =2.若關(guān)于x的方程 ()對(duì)任意自然數(shù)n都有相等的實(shí)根.
(1)求a2 ,a3的值;
(2)求證
【解析】(1)中由題意得△,即,進(jìn)而可得,.
(2)中由于,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911043026517891/SYS201207091105101557850601_ST.files/image008.png">,所以數(shù)列是以為首項(xiàng),公比為2的等比數(shù)列,知數(shù)列是以為首項(xiàng),公比為的等比數(shù)列,利用裂項(xiàng)求和得到不等式的證明。
(1)由題意得△,即,進(jìn)而可得
(2)由于,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911043026517891/SYS201207091105101557850601_ST.files/image008.png">,所以數(shù)列是以為首項(xiàng),公比為2的等比數(shù)列,知數(shù)列是以為首項(xiàng),公比為的等比數(shù)列,于是
,
所以
袋子中裝有大小形狀完全相同的m個(gè)紅球和n個(gè)白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個(gè)球,取出的2個(gè)球是同色的概率等于取出的2個(gè)球是異色的概率.
(Ⅰ) 求m,n的值;
(Ⅱ) 從袋子中任取3個(gè)球,設(shè)取到紅球的個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.
【解析】第一問中利用,解得m=6,n=3.
第二問中,的取值為0,1,2,3. P(=0)= , P(=1)=
P(=2)= , P(=3)=
得到分布列和期望值
解:(I)據(jù)題意得到 解得m=6,n=3.
(II)的取值為0,1,2,3.
P(=0)= , P(=1)=
P(=2)= , P(=3)=
的分布列為
所以E=2
已知函數(shù)的圖象經(jīng)過點(diǎn).
(Ⅰ)求的表達(dá)式及其導(dǎo)數(shù);
(Ⅱ)求在閉區(qū)間上的最大值和最小值.
【解析】第一問由題意, ∴ ∴
∴,
第二問令
∵,,,
∴在閉區(qū)間上的最大值是,最小值是.
已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.
(1)求的值;
(2)求在上的最大值和最小值.
【解析】(1)根據(jù)可建立關(guān)于a,b,c的三個(gè)方程,解方程組即可.
(2)在(1)的基礎(chǔ)上,利用導(dǎo)數(shù)列表求極值,最值即可.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com