(3)設(shè)mn < 0 , m + n > 0 , 試判斷能否大于0 ? 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax2+bx+1(a,b∈R且a≠0),F(xiàn)(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的解析式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)是偶函數(shù),判斷F(m)+F(n)是否大于零?

查看答案和解析>>

已知函數(shù)f(x)=ax2+bx+1,a,b為實數(shù),a≠0,x∈R,F(xiàn)(x)=
f(x),x>0
-f(x),x<0
,
(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達式;
(2)在(1)的條件下,當(dāng)x∈[-1,1]時,g(x)=f(x)+kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且函數(shù)f(x)為偶函數(shù),判斷F(m)+F(n)是否大于0.

查看答案和解析>>

已知函數(shù)f(x)=-x2+4,設(shè)函數(shù)F(x)=
f(x),(x>0)
-f(x),(x<0)

(1)求F(x)表達式;
(2)解不等式1≤F(x)≤2;
(3)設(shè)mn<0,m+n>0,判斷F(m)+F(n)能否小于0?

查看答案和解析>>

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù),且a≠0),F(x)=
f(x)
,&x>0
-f(x),?x<0.

(1)若f(-1)=0,曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸,求F(x)的表達式;
(2)在(Ⅰ)在條件下,當(dāng)時,,求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù),且a≠0),F(xiàn)(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸,求f(x)的表達式;
(2)在(Ⅰ)在條件下,當(dāng)x∈[-1,1]時,g(x)=kx-f(x)是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.

查看答案和解析>>


同步練習(xí)冊答案