題目列表(包括答案和解析)
已知中心在坐標(biāo)原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。
第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為
第二問中,
假設(shè)存在這樣的直線,設(shè),MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線符合題意;
(ii)下面僅考慮情形:
由,得,
,得
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為
(Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線符合題意;
(ii)下面僅考慮情形:
由,得,
,得……② ……………………9分
則.
代入①式得,解得………………………………………12分
代入②式得,得.
綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是
已知函數(shù)f(x)=sin(ωx+φ) (0<φ<π,ω>0)過點,函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.
【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運用,第一問中利用函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為.得,所以
第二問中,,
可以得到單調(diào)區(qū)間。
解:(Ⅰ)由題意得,,…………………1分
代入點,得…………1分
, ∴
(Ⅱ), 的單調(diào)遞減區(qū)間為,.
如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點,以為切點作拋物線的切線,直線交軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為, 直線與軸交點為,連接交拋物線于、兩點,求△的面積的取值范圍.
【解析】第一問中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,
第二問中,由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為是定點,所以點在定直線
第三問中,設(shè)直線,代入得結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為是定點,所以點在定直線上.…(2分)
(Ⅲ)設(shè)直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.
由P在橢圓上,有
因為,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
------①
------②
由①+② 得------③
令 有
代入③得
(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
;
(Ⅱ)若的三個內(nèi)角滿足,試判斷的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com