題目列表(包括答案和解析)
A、B是兩個定點,且,動點M到A點的距離是10,線段MB的垂直平分線交MA于點P,若以AB所在直線為軸、AB的中垂線為y軸建立直角坐標(biāo)系.
(I)試求P點的軌跡C的方程;
(II)直線與點P所在曲線C交于弦EF,當(dāng)m變化時,試求的面積的最大值.
已知曲線所圍成的封閉圖形的面積為,曲線C1的內(nèi)切圓半徑為.記C2為以曲線C1與坐標(biāo)軸的交點為頂點的橢圓.
(Ⅰ)求橢圓C2的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)AB是過橢圓C2中心的任意弦,l是線段AB的垂直平分線.M是l上異于橢圓中心的點.
(1)若|MO|=λ|OA|(O為坐標(biāo)原點),當(dāng)點A在橢圓C2上運動時,求點M的軌跡方程;
(2)若M是l與橢圓C2的交點,求△AMB的面積的最小值.
在平面直角坐標(biāo)系xOy中,設(shè)曲線C1:所圍成的封閉圖形的面積為,曲線C1上的點到原點O的最短距離為.以曲線C1與坐標(biāo)軸的交點為頂點的橢圓記為C2.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過橢圓C2中心O的任意弦,l是線段AB的垂直平分線.M是l上的點(與O不重合).
①若MO=2OA,當(dāng)點A在橢圓C2上運動時,求點M的軌跡方程;
②若M是l與橢圓C2的交點,求△AMB的面積的最小值.
(I)求橢圓C2的標(biāo)準(zhǔn)方程;
(II)設(shè)AB是過橢圓C,中心的任意弦,l是線段AB的垂直平分線,M是l上異于橢圓中心的點.
(1) 若|MO|=|OA|(O為坐標(biāo)原點),當(dāng)點A在橢圓C2上運動時,求點M的軌跡方程;
(2)若M是l與橢圓C2的交點,求△AMB的面積的最小值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com