13.已知等差數(shù)列的前項(xiàng)和為.且過(guò)點(diǎn)和的直線的斜率是4.若.則 ▲ . 查看更多

 

題目列表(包括答案和解析)

8.已知某數(shù)列前項(xiàng)之和為,且前個(gè)偶數(shù)項(xiàng)的和為,則前個(gè)奇數(shù)項(xiàng)的和為                                                                     (    )

      A.         B.       C.                   D.

查看答案和解析>>

已知某數(shù)列前項(xiàng)之和為,且前個(gè)偶數(shù)項(xiàng)的和為,則前個(gè)奇數(shù)項(xiàng)的和為                                                                (    )

      A.        B.         C.                 D.

查看答案和解析>>

已知?jiǎng)訄A軸相切,且過(guò)點(diǎn).

⑴求動(dòng)圓圓心的軌跡方程;

⑵設(shè)、為曲線上兩點(diǎn),,,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>


已知圓C:內(nèi)有一點(diǎn)P,過(guò)點(diǎn)P作直線交圓C與A,B兩點(diǎn) (12分)
(1)當(dāng)經(jīng)過(guò)圓心C時(shí),求直線方程
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線方程
(3)求過(guò)點(diǎn)(4,3)且與圓相切的直線方程

查看答案和解析>>

 

已知圓C:內(nèi)有一點(diǎn)P,過(guò)點(diǎn)P作直線交圓C與A,B兩點(diǎn)  (12分)

(1)當(dāng)經(jīng)過(guò)圓心C時(shí),求直線方程

(2)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線方程

(3)求過(guò)點(diǎn)(4,3)且與圓相切的直線方程

 

查看答案和解析>>

數(shù)   學(xué)(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個(gè)“心”字球的取法共有4種情形:

開(kāi)心心,心開(kāi)心,心心開(kāi),心心樂(lè).

則恰好摸到2個(gè)“心”字球的概率是

.………………………………………6分

(Ⅱ)解:,

,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點(diǎn),則⊥底面

所以就是與底面所成的角.

,故

與底面所成的角是.……………………………………………3分

如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,則

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設(shè),則.于是

舍去),

則P為棱的中點(diǎn),其坐標(biāo)為.…………………………………………9分

設(shè)平面的法向量為,則

,故.…………………11分

而平面的法向量是

,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設(shè),

⑴若軸,可設(shè),因,則

,得,即

軸,可設(shè),同理可得.……………………7分

⑵當(dāng)直線的斜率存在且不為0時(shí),設(shè)

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡(jiǎn)得

綜合⑴、⑵,可知點(diǎn)的軌跡方程為.………………………15分

22.(Ⅰ)證明:當(dāng)時(shí),.令,則

遞增;若,遞減,

的極(最)大值點(diǎn).于是

,即.故當(dāng)時(shí),有.………5分

(Ⅱ)解:對(duì)求導(dǎo),得

①若,,則上單調(diào)遞減,故合題意.

②若,

則必須,故當(dāng)時(shí),上單調(diào)遞增.

③若,的對(duì)稱(chēng)軸,則必須,

故當(dāng)時(shí),上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問(wèn)題等價(jià)于

        找一個(gè)使成立,故只需滿(mǎn)足函數(shù)的最小值即可.

        因,

,

故當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分

 

 


同步練習(xí)冊(cè)答案