16.已知圓直線.若圓上恰有 查看更多

 

題目列表(包括答案和解析)

已知關(guān)于的方程在區(qū)間上恰有一個實數(shù)根,則實數(shù)的取值范圍是

    (A)    (B)    (C)     (D)

查看答案和解析>>

已知關(guān)于的方程在區(qū)間上恰有一個實數(shù)根,則實數(shù)的取值范圍是

    (A)    (B)    (C)     (D)

查看答案和解析>>

(2009•荊州模擬)已知圓x2+y2-2x+4y+1=0和直線2x+y+c=0,若圓上恰有三個點到直線的距離為1,則c=
±
5
±
5

查看答案和解析>>

已知,直線為平面上的動點,過點的垂線,垂足為點,且

(1)求動點的軌跡曲線的方程;

(2)設(shè)動直線與曲線相切于點,且與直線相交于點,試探究:在坐標平面內(nèi)是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標;若不存在,說明理由.

 

查看答案和解析>>

已知,直線,為平面上的動點,過點的垂線,垂足為點,且

(Ⅰ)求動點的軌跡曲線的方程;

(Ⅱ)設(shè)動直線與曲線相切于點,且與直線相交于點,試問:在軸上是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標;若不存在,說明理由.

 

查看答案和解析>>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由題意,有,

.…………………………5分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)設(shè)數(shù)列的公比為,由,.             …………………………………………………………… 4分

∴數(shù)列的通項公式為.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中點,連接.

分別是梯形的中位線

,又

∴面,又

.……………………… 7分

(II)由三視圖知,是等腰直角三角形,

     連接

     在面AC1上的射影就是,∴

     ,

∴當的中點時,與平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由題意:.

為點M的軌跡方程.     ………………………………………… 4分

(Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

    ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程為,求得.  ………………………… 9分

.  ……………………………… 13分

當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

22. 解:(Ⅰ),由題意得,

所以                    ………………………………………………… 4分

(Ⅱ)證明:令,

得:,……………………………………………… 7分

(1)當時,,在,即上單調(diào)遞增,此時.

          …………………………………………………………… 10分

(2)當時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

.                        …………………………………………14分

由 (1) 、(2)得 .

∴綜上所述,對于,使得成立. ………………15分

 


同步練習冊答案