⑵.求直線與平面所成角的大小, 查看更多

 

題目列表(包括答案和解析)

(本題滿分10分)如圖,已知都是邊長為的等邊三角形,且平面平面,過點平面,且

(1)求證:平面

(2)求直線與平面所成角的大。

 

 

 

 

 

 

查看答案和解析>>

(08年龍巖一中沖刺文)(12分)

如圖,梯形中,,的中點,將沿折起,使點折到點的位置,且二面角的大小為

(1)求證:

(2)求直線與平面所成角的大小

(3)求點到平面的距離

查看答案和解析>>

如圖所示,在四棱錐中,底面四邊形是菱形,,是邊長為2的等邊三角形,,.

(Ⅰ)求證:底面;

(Ⅱ)求直線與平面所成角的大。

(Ⅲ)在線段上是否存在一點,使得∥平面?如果存在,求的值,如果不存在,請說明理由.

 

查看答案和解析>>

如圖,四棱錐的底面為矩形,是四棱錐的高,

所成角為, 的中點,上的動點.

(Ⅰ)證明:

(Ⅱ)若,求直線與平面所成角的大小.

 

 

 

查看答案和解析>>

如圖,為圓的直徑,點、在圓上,,矩形和圓所在的平面互相垂直.已知,

(1)求證:直線平面;

(2)求直線與平面所成角的大小;

(3)當(dāng)的長為何值時,二面角的大小為?

 

 

 

查看答案和解析>>

題號

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期為.                                 (8分)
(2)∵,∴
.                               (12分)

18、解:(1)表示取出的三個球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………6分

(2)在時, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面

因為,所以,

,故為等腰直角三角形,

由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設(shè),

,由,,,得

,

的面積

連結(jié),得的面積

設(shè)到平面的距離為,由于,得

,

解得

設(shè)與平面所成角為,則

所以,直線與平面所成的我為

20、解:(I)由題意知,因此,從而

又對求導(dǎo)得

由題意,因此,解得

(II)由(I)知),令,解得

當(dāng)時,,此時為減函數(shù);

當(dāng)時,,此時為增函數(shù).

因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

,從而,

解得

所以的取值范圍為

21、解:(Ⅰ)解法一:易知

所以,設(shè),則

因為,故當(dāng),即點為橢圓短軸端點時,有最小值

當(dāng),即點為橢圓長軸端點時,有最大值

解法二:易知,所以,設(shè),則

(以下同解法一)

(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線,

聯(lián)立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的兩個根為,

當(dāng)時,,

所以;

當(dāng)時,,,

所以;

當(dāng)時,,

所以時;

當(dāng)時,,

所以

(II)解:

(III)證明:,

所以,

當(dāng)時,

,

同時,

綜上,當(dāng)時,

 

 

 


同步練習(xí)冊答案