如圖3.是正ABC內(nèi)的一點(diǎn).且 查看更多

 

題目列表(包括答案和解析)

如圖,在直角坐標(biāo)系xOy中,直線y=kx+b交x軸負(fù)半軸于A(-1,0),交y軸正半軸于B,C是x軸負(fù)半軸上一點(diǎn),且CA=
34
CO,△ABC的面積為6.
精英家教網(wǎng)
(1)求C點(diǎn)的坐標(biāo);
(2)求直線AB的解析式;
(3)D是第二象限內(nèi)一動點(diǎn),且OD⊥BD,直線BE垂直射線CD于E,OF⊥OD交直線BE于F.當(dāng)線段OD,BD的長度發(fā)生改變時,∠BDF的大小是否發(fā)生改變?若改變,請說明理由;若不變,請證明并求出其值.
精英家教網(wǎng)

查看答案和解析>>

22、如圖,已知每個小方格都是邊長為1的正方形,我們稱每個小正方形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的圖形稱為格點(diǎn)圖形.圖中的△ABC是一個格點(diǎn)三角形.
(1)請你在第一象限內(nèi)畫出格點(diǎn)△AB1C1,使得△AB1C1∽△ABC,且△AB1C1與△ABC的相似比為3:1;
(2)寫出B1、C1兩點(diǎn)的坐標(biāo).

查看答案和解析>>

如圖,在規(guī)格為8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,請?jiān)谒o網(wǎng)格中按下列要求操作:
(1)直接寫出A、B兩點(diǎn)的坐標(biāo);
(2)在第二象限內(nèi)的格點(diǎn)(網(wǎng)格線的交點(diǎn))上畫一點(diǎn)C,使點(diǎn)C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),求C點(diǎn)坐標(biāo);
(3)以(2)中△ABC的頂點(diǎn)C為旋轉(zhuǎn)中心,畫出△ABC旋轉(zhuǎn)180°后所得到的△DEC,連接AE和BD,試判定四邊形ABDE是什么特殊四邊形,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

14、如圖,已知AB是半徑為1的圓O的一條弦,且AB<1,以AB為一邊在圓O內(nèi)作正△ABC,點(diǎn)D為圓O上不同于點(diǎn)A的一點(diǎn),且DB=AB,DC的延長線交圓O于點(diǎn)E,試探究AE的長是否為定值(不隨AB長度的變化而變化)?若為定值,求出這個定值;若不為定值,試確定AE與AB長之間的關(guān)系.
AE=AB

查看答案和解析>>

如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.若將△PAC繞點(diǎn)A逆時針旋轉(zhuǎn)60°后,得到△P′AB,則點(diǎn)P與P′之間的距離為
6
6
,∠APB=
150°
150°

查看答案和解析>>

一、選擇題

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空題

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答題

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 證明:在中,--2分

分別是的中點(diǎn),∴.   ∴.---------4分

(2) 四邊形是矩形.

證明:∵四邊形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四邊形是平行四邊形.        ------------- 7分

∴四邊形是矩形.     ------------------------------------------------------------- 8分

18.解:過,垂足為,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)證明:在等腰梯形中,

        --------------------------------------------------1分

,,

.                      -------------3分

(2) 解:過分別作,垂足分別為.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原來一天可獲得的利潤為 (元)-------2分

(2). ① 由題意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 當(dāng)時,. ----------------------------6分

解這個方程,得.  ----------------------------------------------------------------8分

 答:出售單價是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函數(shù)解析式可知:只有點(diǎn)(1,4)和(3,1)在其圖像上,所以,甲獲勝的概率是,即平均每12次才獲勝1次,得10分;而乙獲勝的概率是,即平均每12次獲勝11次,得11分,所以我愿意當(dāng)乙.--------------------- 10分

22.(1) 四邊形是平行四邊形.            ------------------------------1分

證明:.又,..

四邊形是平行四邊形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的證明過程,可知分別是邊長為的正三角形.

點(diǎn)的距離為.即. -----------------8分,時, 四邊形的面積有最大值是.

此時,重合,, 四邊形是菱形. -------------------------11分

23.解:⑴過點(diǎn)軸,垂足為,由垂徑定理,得的中點(diǎn),

.軸相切于中,

點(diǎn)的坐標(biāo)是.            -----------------2分

設(shè)的解析式為.將兩點(diǎn)的坐標(biāo)代入,得解得所在直線的解析式為         --------------------- 4分

(2) ∵,∴連結(jié).

,∴          -----------------------6分

是直徑,∴

         -------------------------------------------------------------------8分

(3) 判斷:不存在.      ----------------------------------------------------------------- 9分

假設(shè)存在點(diǎn),使為等邊三角形.則.連結(jié),那么.,利用的面積,可得,不與重合, .這與等邊三角形定義矛盾.

假設(shè)不成立.即點(diǎn)不存在. ----------------------------------------------------------- 12分-

 

 

 


同步練習(xí)冊答案