題目列表(包括答案和解析)
| ||
2 |
1 |
2 |
x2 |
a2 |
y2 |
b2 |
x0x |
a2 |
y0y |
b2 |
(12分)已知橢圓的離心率為,橢圓的中心關(guān)于直線的對(duì)稱點(diǎn)落在直線上
(1)求橢圓C的方程;
(2)設(shè)是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),連接交橢圓于另一點(diǎn),求直線的斜率范圍并證明直線與軸相交頂點(diǎn)。
已知橢圓的離心率為,且曲線過(guò)點(diǎn)
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)不在圓內(nèi),求的取值范圍.
已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求動(dòng)點(diǎn)M的軌跡的方程;
(Ⅲ)過(guò)橢圓的焦點(diǎn)作直線與曲線交于A、B兩點(diǎn),當(dāng)的斜率為時(shí),直線 上是否存在點(diǎn)M,使若存在,求出M的坐標(biāo),若不存在,說(shuō)明理由
一、選擇題:每小題5分,共60分
BCCAB ACADB BB
二、填空題:每小題4分,共16分
13.,甲,甲:①
三、解答題:本題滿分共74分,解答應(yīng)有必要的文字說(shuō)明,解答過(guò)程或演算步驟
17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用
(2)甲抽到3,乙抽到的牌只能是2,4,
因此乙抽到的牌的數(shù)字大于3的概率是;------------------------(6分)
(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(
此游戲不公平------------------(12分)
18.解:(1)由題意知.
(5分)
,
-----------------(7分)
(2)
-------------------------------------(9分)
---------------(12分)
19.解:(1)低面ABCD是正方形,O為中心,AC⊥BD
又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)
(2)連接
又由(1)知,AC⊥BD
且AC⊥平面SBD,
所以,AC⊥SB---------------(8分)
⊥⊥,且EMNE=E
⊥平面EMN-------------(10分)
因此,當(dāng)P點(diǎn)在線段MN上移動(dòng)時(shí),總有AC⊥EP-----(12分)
20.解:
-------------------------------(2分)
(2)
則
令--------------------------------(4分)
當(dāng)x在區(qū)間[-1,2]上變化時(shí),y’,y的變化情況如下表:
X
-1
1
(1,2)
2
Y’
+
0
-
0
+
Y
3/2
單增
極大值
單減
極小值
單增
3
又
-----------(6分)
(3)證明:
又
---------------------(12分)
21.解:(1)
當(dāng)
當(dāng),適合上式,
-------------------------------(4分)
(2),
①
, ②
兩式相減,得
=
=
=
--------------------------------(8分)
(3)證明,由
又
=
成立---------------------------------------------------(12分)
22.解:(1)由題意可知直線l的方程為,
因?yàn)橹本與圓相切,所以=1,既
從而----------------------------------------------------------------------------------------(6分)
(2)設(shè)則
---------------------------------(8分)
j當(dāng)
k當(dāng)
故舍去。
綜上所述,橢圓的方程為------------------------------------(14分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com