22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動時(shí),求動點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題:每小題5分,共60分

BCCAB    ACADB    BB

二、填空題:每小題4分,共16分

13.,甲,甲:

三、解答題:本題滿分共74分,解答應(yīng)有必要的文字說明,解答過程或演算步驟

17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用4’表示)為(2,3),(2,4),(2,4),(3,2),(3,4),(3,4’),(4,2),(4,3),(4,4’),(4’,2),(4’,3),(4’,4)共12種不同情況--------(4分)

 

(2)甲抽到3,乙抽到的牌只能是2,4,4’

  因此乙抽到的牌的數(shù)字大于3的概率是;------------------------(6分)

 

(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(4’,2),(4’,3)共5種,所以,甲勝的概率是,乙獲勝的與甲獲勝是對立事件,所以乙獲勝的概率是

   此游戲不公平------------------(12分)

18.解:(1)由題意知.

     (5分)

  ,

  -----------------(7分)

 

(2)

-------------------------------------(9分)

---------------(12分)

   19.解:(1)低面ABCD是正方形,O為中心,AC⊥BD

      又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)

www.ks5u.com     (2)連接

      

      

       又由(1)知,AC⊥BD

       且AC⊥平面SBD,

       所以,AC⊥SB---------------(8分)

       ,且EMNE=E

       ⊥平面EMN-------------(10分)

       因此,當(dāng)P點(diǎn)在線段MN上移動時(shí),總有AC⊥EP-----(12分)

 

  20.解:

      -------------------------------(2分)

      (2)

       則

       令--------------------------------(4分)

       當(dāng)x在區(qū)間[-1,2]上變化時(shí),y’,y的變化情況如下表:

     

X

-1

1

(1,2)

2

Y’

 

+

0

-

0

+

 

Y

3/2

單增

極大值

單減

極小值

單增

3

-----------(6分)

(3)證明:

---------------------(12分)

 

 21.解:(1)

   當(dāng)

   當(dāng),適合上式,

   -------------------------------(4分)

   (2)

   ①

, ②

兩式相減,得

=

=

=

--------------------------------(8分)

(3)證明,由

=

成立---------------------------------------------------(12分)

 

22.解:(1)由題意可知直線l的方程為,

因?yàn)橹本與圓相切,所以=1,既

從而----------------------------------------------------------------------------------------(6分)

(2)設(shè)

---------------------------------(8分)

j當(dāng)

k當(dāng)

故舍去。

綜上所述,橢圓的方程為------------------------------------(14分)

 

 

 


同步練習(xí)冊答案