于是時.成立 查看更多

 

題目列表(包括答案和解析)

時,關(guān)于x的不等式恒成立,則實數(shù)的取值范圍是     

查看答案和解析>>

完成下列問題:

(1)甲、乙兩射手同時射擊一目標,甲的命中率為0.65,乙的命中率為0.60,那么能否得出結(jié)論:目標被命中的概率等于0.65+0.60=1.25?

(2)一射手命中靶的內(nèi)圈的概率是0.25,命中靶的其余部分的概率是0.50.那么能否得出結(jié)論:目標被命中的概率等于0.25+0.50=0.75?

(3)兩人各擲一枚硬幣,“同時出現(xiàn)正面”的概率可以算得為.由于“不出現(xiàn)正面”是上述事件的對立事件,所以它的概率等于1-.這樣說對嗎?

查看答案和解析>>

如圖,矩形ABCD中,|AB|=10,|BC|=6,現(xiàn)以矩形ABCD的AB邊為x軸,AB的中點為原點建立直角坐標系,P是x軸上方一點,使得PC、PD與線段AB分別交于點C1、D1,且|AD1|,|D1C1|,|C1B|成等比數(shù)列.
(1)求動點P的軌跡方程;
(2)求動點P到直線l:x+y+6=0距離的最大值及取得最大值時點P的坐標.

查看答案和解析>>

如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).
(1)建立適當?shù)淖鴺讼担髵佄锞C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)

查看答案和解析>>

對于函數(shù),若存在實數(shù),使成立,則稱的不動點.

 (1)當時,求的不動點;

 (2)若對于任何實數(shù),函數(shù)恒有兩相異的不動點,求實數(shù)的取值范圍;

 (3)在(2)的條件下,若的圖象上兩點的橫坐標是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的最小值.

查看答案和解析>>


同步練習冊答案