又面經(jīng)過直線.故面面---------- 查看更多

 

題目列表(包括答案和解析)

如圖,在直三棱柱中,底面為等腰直角三角形,為棱上一點,且平面平面.

(Ⅰ)求證:點為棱的中點;

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,

易知。由此知:從而有又點的中點,所以,所以點為棱的中點.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。

(1)過點點,取的中點,連。且相交于,面內(nèi)的直線,!3分

且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點的中點,所以,所以點為棱的中點.               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

設(shè)a,b是異面直線,則以下四個命題:①存在分別經(jīng)過直線a和b的兩個互相垂直的平面;②存在分別經(jīng)過直線a和b的兩個平行平面;③經(jīng)過直線a有且只有一個平面垂直于直線b;④經(jīng)過直線a有且只有一個平面平行于直線b.其中正確的個數(shù)有
( 。

查看答案和解析>>

給定下列四個命題:
①a,b是兩異面直線,那么經(jīng)過直線a可以作無數(shù)個與直線b平行的平面.
②α,β是任意兩個平面,那么一定存在平面滿足α⊥γ且β⊥γ.
③a,b是長方體互相平行的兩條棱,將長方體展開,那么在展開圖中,a、6對應的線段所在直線互相平行.
④已知任意直線a和平面a,那么一定荏在平面γ,滿足α?γ且α⊥γ.
其中,為真命題的是(  )

查看答案和解析>>

有下列六個命題:
(1)經(jīng)過直線外一點有且只有一條直線與該直線垂直;
(2)經(jīng)過直線外一點有且只有一個平面與該直線垂直;
(3)若a∥b,則在平面α內(nèi)到這兩條直線a、b的距離相等的點的集合可能是一條直線或一個平面或空集;
(4)P是異面直線a、b外一點,則過P有一個平面與a、b都平行;
(5)P是異面直線a、b外一點,則過P有一條直線與a、b都相交;
(6)a、b是異面直線,過a可以作且只可以作一個平面與b平行.
其中真命題的序號有:
(2)(3)(6)
(2)(3)(6)
.(將所有命題的序號都填上)

查看答案和解析>>

給出下列四個命題:

①若直線l∥平面α,則直線l的垂線必平行于平面α;

②若直線l與平面α相交,則有且只有一個平面經(jīng)過直線l與平面α垂直;

③若一個三棱錐每兩個相鄰側(cè)面所成的角都相等,則這個三棱錐是正三棱錐;

④若四棱柱的任意兩條對角線相交且互相平分,則這個四棱柱為平行六面體.

其中,正確的命題是________________.(把你認為正確的命題的序號都填上)

查看答案和解析>>


同步練習冊答案