② 如果該橢圓有一個焦點與拋物線的焦點重合.且該拋物線的通徑等于8.求該橢圓方程. 四川省南充市08-09學(xué)年高二教學(xué)質(zhì)量監(jiān)測 查看更多

 

題目列表(包括答案和解析)

已知橢圓方程為
x
16
2
+
y
12
2
=1

(1)寫出橢圓的頂點坐標和焦點坐標.
(2)若等軸雙曲線C與該橢圓有相同焦點,求雙曲線標準方程.

查看答案和解析>>

橢圓x2+4y2=16的離心率等于
 
,與該橢圓有共同焦點,且一條漸近線是x+
3
y=0的雙曲線方程是
 

查看答案和解析>>

在平面直角坐標系中,若中心在坐標原點上的雙曲線的一條準線方程為,且它的一個頂點與拋物線的焦點重合,則該雙曲線的漸進線方程為 .

 

查看答案和解析>>

設(shè)橢圓的一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.

(1)求橢圓C的方程;

(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.

(3)若AB是橢圓C經(jīng)過原點O的弦, MNAB,求證:為定值

 

查看答案和解析>>

在平面直角坐標系中,若中心在坐標原點上的雙曲線的一條準線方程為,且它的一個頂點與拋物線的焦點重合,則該雙曲線的漸進線方程為 .

 

查看答案和解析>>

一、選擇題(4′×10=40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

   作根軸圖:

 

 

 

                                                      ………………………4′

  

可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

   則的方程為: ………………………4′

為所求………………………6′

16.解:∵  則,………………………1′

∴有………………………3′

        ………………………4′

     ………………………5′

     

當且僅當:………………………5′

       亦:時取等號

所以:當時,………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………6′

由弦長公式得:………………………8′

18.解①設(shè)雙曲線的實半軸,虛半軸分別為

則有:   ∴………………………1′

于是可設(shè)雙曲線方程為:  ①或 ②………………………3′

將點代入①求得:

將點代入②求得: (舍去) ………………………4′

,

∴雙曲線的方程為:………………………5′

②由①解得:,,,焦點在軸上………………………6′

∴雙曲線的準線方程為:………………………7′

漸近線方程為: ………………………8′

19.解:①設(shè)為橢圓的半焦距,則,

   ∵  ∴  ∴………………………1′

代入,可求得

  ∵  ∴

  又、………………………3′

,

………………………5′

從而

∴離心率………………………6′

②由拋物線的通徑

得拋物線方程為,其焦點為………………………7′

∴橢圓的左焦點

由①解得:

………………………8′

∴該橢圓方程為:………………………9′

③      

 

 


同步練習冊答案