(2)求的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說明理由

查看答案和解析>>

數(shù)列的通項(xiàng)公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結(jié)果推測出計(jì)算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

求通項(xiàng)公式:

(1)的各項(xiàng)均為正數(shù),且滿足關(guān)系,;求

(2)中,,,求

(3)設(shè),數(shù)列n2時(shí)滿足

,,求

查看答案和解析>>

求通項(xiàng)公式:

(1)的各項(xiàng)均為正數(shù),且滿足關(guān)系;求

(2)中,,,求

(3)設(shè),數(shù)列在n≥2時(shí)滿足

,求

查看答案和解析>>

數(shù)列{an}的通項(xiàng)公式為an=
1
(n+1)2
(n∈N*),設(shè)f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表達(dá)式;
(3)數(shù)列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項(xiàng)和為g(n),求證:當(dāng)n∈N*時(shí),g(2n)-
n
2
≥1.

查看答案和解析>>

 

一、選擇題:本大題共有8個(gè)小題,每小題5分,共40分;在每個(gè)小題給出的四個(gè)選項(xiàng)中有且僅有一個(gè)是符合題目要求的。

1―8 BDCAABCB

二、填空題:本大題共有6個(gè)小題,每小題5分,共30分;請把答案寫在相應(yīng)的位置上。

9.    10.    11.7    12.    13.    14.

三、解答題:本大題共6個(gè)小題,共80分;解答應(yīng)寫出文字說明,證明過程或演算步驟。

15.(本題滿分13分)

解:

   (1)

   (2)由(1)知,

16.(本題滿分13分)

    解:(1)表示經(jīng)過操作以后袋中只有1個(gè)紅球,有兩種情形出現(xiàn)

①先從中取出紅和白,再從中取一白到

②先從中取出紅球,再從中取一紅球到

。 ………………7分

   (2)同(1)中計(jì)算方法可知:。

于是的概率分布列

0

1

2

3

P

  。 ………………13分

17.(本題滿分13分)

解法1:(1)連結(jié)MA、B1M,過M作MN⊥B1M,且MN交CC1點(diǎn)N,

又∵平面ABC⊥平面BB1C1C,

平面ABC∩平面BB1C1C=BC,

∴AM⊥平面BB1C1C,

∵M(jìn)N平面BB1C1C,

∴MN⊥AM。

∵AM∩B1M=M,

∴MN⊥平面AMB1,∴MN⊥AB1

∵在Rt△B1BM與Rt△MCN中,

即N為C1C四等分點(diǎn)(靠近點(diǎn)C)。  ……………………6分

   (2)過點(diǎn)M作ME⊥AB1,垂足為R,連結(jié)EN,

由(1)知MN⊥平面AMB1,

∴EN⊥AB1

∴∠MEN為二面角M―AB1―N的平面角。

∵正三棱柱ABC―A1B1C1,BB1=BC=2,

<object id="6xsog"></object>
  • ∴N點(diǎn)是C1C的四等分點(diǎn)(靠近點(diǎn)C)。  ………………6分

       (2)∵AM⊥BC,平面ABC⊥平面BB1C1C

    且平面ABC∩平面BB1C1C=BC,

    ∴AM⊥平面BB1C1C

    ∵M(jìn)N平面BB1C1,∴AM⊥MN,

    ∵M(jìn)N⊥AB1,∴MN⊥平面AMB1,

     

    18.(本題滿分13分)

    解:(1)

       (2)當(dāng)

       (3)令

         ①

         ②

    ①―②得   ………………13分

    19.(本題滿分14分)

    解:(1)設(shè)橢圓C的方程:

       (2)由

            ①

    由①式得

    20.(本題滿分14分)

    解:(1)

       (2)證明:①在(1)的過程中可知

    ②假設(shè)在

    綜合①②可知:   ………………9分

       (3)由變形為:

       

     

     


    同步練習(xí)冊答案