A.{1.2} B.{.2) C.{.0) D.{.0.2) 查看更多

 

題目列表(包括答案和解析)

a
=(1,1),
b
=(1,0),
c
滿足
a
c
=0,且|
a
|
=|
c
|
,
b
c
>0
(I)求向量
c
;
(II)若映射f:(x,y)→(x′,y′)=x
a
+y
c

①求映射f下(1,2)原象;
②若將(x、y)作點的坐標(biāo),問是否存在直線l使得直線l上任一點在映射f的作用下,仍在直線上,若存在求出l的方程,若不存在說明理由.

查看答案和解析>>

精英家教網(wǎng)A.(不等式選講選做題)若不等式|x+1|+|x-2|<a無實數(shù)解,則a的取值范圍是
 

B.(幾何證明選做題)如圖,⊙O的直徑AB=6cm,P是AB延長線上的一點,過P點作⊙O的切線,切點為C,連接AC,若∠CPA=30°,PC=
 

C.(極坐標(biāo)參數(shù)方程選做題)曲線
x=cosα
y=1+sinα
(a為參數(shù))與曲線ρ2-2ρcosθ=0的交點個數(shù)為
 
個.

查看答案和解析>>

若A(-1,2),B(m,0),C(5,-6)三點共線.則實數(shù)m的值等于
 

查看答案和解析>>

設(shè)
a
=(-1,2),
b
=(1,-1),
c
=(3,-2),且
c
=p
a
+q
b
,則實數(shù)p、q的值分別為(  )

查看答案和解析>>

若{1,2}={x|x2+bx+c=0},則( 。

查看答案和解析>>

學(xué)科網(wǎng)(Zxxk.Com)

1.B       2.A      3.C       4.B       5.A      6.D      7.B       8.C       9.C       1 0.B 學(xué)科網(wǎng)(Zxxk.Com)

11.B     12.D學(xué)科網(wǎng)(Zxxk.Com)

1.學(xué)科網(wǎng)(Zxxk.Com)

2.學(xué)科網(wǎng)(Zxxk.Com)

3.是方程的根,或8,又,學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

4.學(xué)科網(wǎng)(Zxxk.Com)

5.畫出可行域,如圖,可看為區(qū)域內(nèi)的點與(0,0)連線的斜率,學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

6.

7.在中,,在中,

中,,在中,,

8.的圖象如圖所示

       的解集為

9.由點的軌跡是以為焦點的雙曲線一支.,

10.由獨立重復(fù)試驗的概率

11.設(shè),圓為最長弦為直徑,最短弦的中點為,

12.幾何體的表面積是三個圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為

二、

13.平方得

      

14.的系數(shù)

15.1.互為反函數(shù),

       令,

      

16.0或 ,設(shè)點的橫坐標(biāo)為點處的切線斜率為,由夾角公式得,即

,得,矛盾

三、

17.(1),由,得,消去

             

             

(2)

      

       ,

      

       時,的最大值為時,的最大值為2.

18.(1)從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品,一共有種不同的選法.選出的3種商品中,沒有日用商品的選法有種。所以選出的3種商品至少有一種日用商品的概率為

(2)假設(shè)商場將中獎獎金數(shù)額定為元,則顧客在三歡抽獎中所獲得的獎金總額是一個隨機(jī)變量,其所有可能的取值為

      

      

      

      

于是顧客在三次抽獎中所獲得的獎金總額的期望值是

要使促銷方案對商場有利,因此應(yīng)有,

故商場應(yīng)將中獎獎金數(shù)額最高定為120元.才能使促銷方案對自己有利.

19.(1)證明:

連接

,又

              即        平面

(2)方法1   取的中點,的中點的中點,或其補(bǔ)角是所成的角.

           ∴連接斜邊上的中線,

             

              在中,由余弦定理得,

           ∴直線所成的角為

(3)方法l

       平面,過,連接,

              在平面上的射影,由三垂線定理得

              是二面角的平面角,

              ,又

中,,

∴二面角

(2)方法2

建立空間直角坐標(biāo)系

∴直線所成的角為

(3)方法2

在坐標(biāo)系中,平面的法向量

設(shè)平面的法向量,則

求得,

∴二面角

20.是首項為、公比為的等比數(shù)列,

      

(1)當(dāng)時,

      

      

      

       兩式相減得

      

      

(2)

當(dāng)時,,,對,,而,

時,成立,即

當(dāng)時,

遞增,時,

時,成立,即

綜上得,的取值范圍是

21.(1)設(shè)

由拋物線定義,,

上,,又

         舍去.

∴橢圓的方程為

       (2)∵直線的方程為為菱形,

              ,設(shè)直線的方程為

              在橢圓上,

             

              設(shè),則

             

的中點坐標(biāo)為,由為菱形可知,點在直線上,

           ∴直線的方程為,即

22.(1),切線的議程為,即.

              令,令,

              ,

             

             

       (2)由,即

              于是

              當(dāng)且僅當(dāng),即時,等號成立.

              時,時,

       (3)

              由

              當(dāng),即時,,

              當(dāng),即時,

              時,取得最小值,最小值為

              由,得,此時,最小值為

 


同步練習(xí)冊答案