題目列表(包括答案和解析)
有一項(xiàng)是符合題目要求的.
的值為 ( 。
A. B.- 。茫 。模
一次高中數(shù)學(xué)期末考試,選擇題共有個(gè),每個(gè)選擇題給出了四個(gè)選項(xiàng),在給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 評(píng)分標(biāo)準(zhǔn)規(guī)定:對(duì)于每個(gè)選擇題,不選或多選或錯(cuò)選得分,選對(duì)得分.在這次考試的選擇題部分,某考生比較熟悉其中的個(gè)題,該考生做對(duì)了這個(gè)題.其余個(gè)題,有一個(gè)題,因全然不理解題意,該考生在給出的四個(gè)選項(xiàng)中,隨機(jī)選了一個(gè);有一個(gè)題給出的四個(gè)選項(xiàng),可判斷有一個(gè)選項(xiàng)不符合題目要求,該考生在剩下的三個(gè)選項(xiàng)中,隨機(jī)選了一個(gè);還有兩個(gè)題,每個(gè)題給出的四個(gè)選項(xiàng),可判斷有兩個(gè)選項(xiàng)不符合題目要求,對(duì)于這兩個(gè)題,該考生都是在剩下的兩個(gè)選項(xiàng)中,隨機(jī)選了一個(gè)選項(xiàng).請(qǐng)你根據(jù)上述信息,解決下列問(wèn)題:
(Ⅰ)在這次考試中,求該考生選擇題部分得分的概率;
(Ⅱ)在這次考試中,設(shè)該考生選擇題部分的得分為,求的數(shù)學(xué)期望.
一次高中數(shù)學(xué)期末考試,選擇題共有個(gè),每個(gè)選擇題給出了四個(gè)選項(xiàng),在給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 評(píng)分標(biāo)準(zhǔn)規(guī)定:對(duì)于每個(gè)選擇題,不選或多選或錯(cuò)選得分,選對(duì)得分.在這次考試的選擇題部分,某考生比較熟悉其中的個(gè)題,該考生做對(duì)了這個(gè)題.其余個(gè)題,有一個(gè)題,因全然不理解題意,該考生在給出的四個(gè)選項(xiàng)中,隨機(jī)選了一個(gè);有一個(gè)題給出的四個(gè)選項(xiàng),可判斷有一個(gè)選項(xiàng)不符合題目要求,該考生在剩下的三個(gè)選項(xiàng)中,隨機(jī)選了一個(gè);還有兩個(gè)題,每個(gè)題給出的四個(gè)選項(xiàng),可判斷有兩個(gè)選項(xiàng)不符合題目要求,對(duì)于這兩個(gè)題,該考生都是在剩下的兩個(gè)選項(xiàng)中,隨機(jī)選了一個(gè)選項(xiàng).請(qǐng)你根據(jù)上述信息,解決下列問(wèn)題:
(Ⅰ)在這次考試中,求該考生選擇題部分得分的概率;
(Ⅱ)在這次考試中,設(shè)該考生選擇題部分的得分為,求的數(shù)學(xué)期望.
考試結(jié)束,請(qǐng)將本試題卷和答題卡一并上交。
一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1.設(shè)全集,集合,,則圖中的陰影部分表示的集合為
A. B.
C. D.
2.已知非零向量、滿足,那么向量與向量的夾角為
A. B. C. D.
3.的展開(kāi)式中第三項(xiàng)的系數(shù)是
A. B. C.15 D.
4.圓與直線相切于點(diǎn),則直線的方程為
A. B. C. D.
1.A 2.C 3.B 4,C 5.B 6.B 7.C 8.B 9.C 10.B
11.B 12.D
1.,在復(fù)平面對(duì)應(yīng)的點(diǎn)在第一象限.
3.當(dāng)時(shí),函數(shù)在上,恒成立即在上恒成立,可得
當(dāng)時(shí),函數(shù)在上,恒成立
即在上恒成立
可得,對(duì)于任意恒成立
所以,綜上得.
4.解法一:聯(lián)立,得.
方程總有解,需恒成立
即恒成立,得恒成立
;又
的取值范圍為.
解法二:數(shù)形結(jié)合,因?yàn)橹本恒過(guò)定點(diǎn)(0,1),欲直線與橢圓總有交點(diǎn),當(dāng)且僅當(dāng)點(diǎn)(0,1)在橢圓上或橢圓內(nèi),即
又
的取值范圍為.
5.
6.(略)
7.展開(kāi)式前二項(xiàng)的系數(shù)滿足可解得,或(舍去).從而可知有理項(xiàng)為.
8.,欲使為奇函數(shù),須使,觀察可知,、不符合要求,若,則,其在上是減函數(shù),故B正確
當(dāng)時(shí),,其在上是增函數(shù),不符合要求.
9.等價(jià)于
畫(huà)圖可知,故.
10.如圖甲所示.設(shè),點(diǎn)到直線的距離為
則由拋物線定義得,由點(diǎn)在雙曲線上,及雙曲線第一定義得
,又由雙曲線第二定義得,解之得.
11.由巳知中獎(jiǎng)20元的概率;中獎(jiǎng)2元的概率,中獎(jiǎng)5元的概率,由上面知娛樂(lè)中心收費(fèi)為1560元.付出元,收入元,估計(jì)該中心收入480元.
12.設(shè)中點(diǎn)為,連.由已知得平面,作,交的延長(zhǎng)線于,蓮.則為所求,設(shè),則,在
中可求出,則.
二、
13..提示:可以用換元法,原不等式為也可以用數(shù)形結(jié)合法.
令,在同一坐標(biāo)系內(nèi)分別畫(huà)出這兩個(gè)函數(shù)的圖象,由圖直觀得解集.
14.12.提示:經(jīng)判斷,為截面圓的直徑,再由巳知可求出球的半徑為.
15..提示:由于得
解得,又
所以,當(dāng)時(shí),取得最小值.
16.①②④
三、
17.懈:
,由正弦定理得,
又,
,化簡(jiǎn)得
為等邊三角形.
說(shuō)明;本題是向量和三角相結(jié)合的題目,既考查了向量的基本知識(shí),又考查了三角的有關(guān)知識(shí),三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來(lái)判斷三角形的形狀.
18.解:(1)分別記“客人游覽甲景點(diǎn)”、“客人游覽乙景點(diǎn)”、 “客人游覽丙景點(diǎn)”為事件、、.由已知、、相互獨(dú)立,,客人游覽的景點(diǎn)數(shù)的可能取值為0,1,2.3,相應(yīng)地客人沒(méi)有游覽的景點(diǎn)的可能取值為3,2,1,0,的取值為1,3,且
的分布列為
1
3
0.76
0.24
.
(2)解法一:在上單凋遞增,要使在上單調(diào)遞增,
當(dāng)且僅當(dāng),即.從而.
解法二:當(dāng)時(shí),在單調(diào)遞增當(dāng)時(shí),在不單調(diào)遞增,.
19.解:(1)因
故是公比為的等比數(shù)列,且
故.
(2)由得
注意到,可得,即
記數(shù)列的前項(xiàng)和為,則
兩式相減得:
故
從而
.
20.解:(1)如圖所示,連接因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6aa879504a44857e377904682f8b8eca.zip/73526.files/image556.gif" >平面,平面平面,平面平面所以;又為的中點(diǎn),故為的中點(diǎn)
底面
為與底面所成的角
在中,
所以與底面所成的角為45°.
(2)解琺一;如圖建立直角坐標(biāo)系
則,
設(shè)點(diǎn)的坐標(biāo)為
故
點(diǎn)的坐標(biāo)為
故.
解法二:平面
,又
平面
在正方形中,
.
21.解:(1)設(shè)點(diǎn)、的坐標(biāo)分別為、點(diǎn)的坐標(biāo)為
當(dāng)時(shí),設(shè)直線的斜率為
直線過(guò)點(diǎn)
的方程為
又已知 ①
②
③
④
∴式①一式②得
⑤
③式+④式得
⑥
∴由式⑤、式⑥及
得點(diǎn)的坐標(biāo)滿足方程
⑦
當(dāng)時(shí),不存在,此時(shí)平行于軸,因此的中點(diǎn)一定落在軸上,即的坐標(biāo)為,顯然點(diǎn)(,0)滿足方程⑦
綜上所述,點(diǎn)的坐標(biāo)滿足方程
設(shè)方程⑦所表示的曲線為
則由,
得
因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6aa879504a44857e377904682f8b8eca.zip/73526.files/image693.gif" >,又已知,
所以當(dāng)時(shí).,曲線與橢圓有且只有一個(gè)交點(diǎn),
當(dāng)時(shí),,曲線與橢圓沒(méi)有交點(diǎn),因?yàn)椋?,0)在橢圓內(nèi),又在曲線上,所以曲線在橢圓內(nèi),故點(diǎn)的軌跡方程為
(2)由解得曲線與軸交于點(diǎn)(0,0),(0,)
由解得曲線與軸交于點(diǎn)(0,0).(,0)
當(dāng),即點(diǎn)為原點(diǎn)時(shí),(,0)、(0,)與(0.0)重合,曲線與坐標(biāo)軸只有一個(gè)交點(diǎn)(0,0).
當(dāng),且,即點(diǎn)不在橢圓外且在除去原點(diǎn)的軸上時(shí),曲線與坐標(biāo)軸有兩個(gè)交點(diǎn)(0,)與(0,0),同理,當(dāng)且時(shí),曲線與坐標(biāo)軸有兩個(gè)交點(diǎn)(,0)、(0,0).
當(dāng),且時(shí),即點(diǎn)不在橢圓外,且不在坐標(biāo)軸上時(shí),曲線與坐標(biāo)軸有三個(gè)交點(diǎn)(,0)、(0,)與(0,0).
22.解:(1)由
故直線的斜率為1.切點(diǎn)為,即(1,0),故的方程為:,
∴直線與的圖象相切.等價(jià)于方程組,只有一解,
即方程有兩個(gè)相等實(shí)根.
.
(2),由
,,當(dāng)時(shí),是增函數(shù)。即
的單調(diào)遞增區(qū)間為(,0).
(3)由(1)知,,令
由
令,則
當(dāng)變化時(shí),的變化關(guān)系如下表:
()
ㄊ
0
極大植ln2
(,0)
ㄋ
0
0
極小植
(0,1)
ㄊ
1
0
極大值ln2
(1,)
ㄋ
據(jù)此可知,當(dāng)時(shí),方程有三解
當(dāng),方程有四解
當(dāng)或時(shí),方程有兩解
當(dāng)時(shí),方程無(wú)解.
www.ks5u.com
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com