由于對稱性.只需求出 .此時 查看更多

 

題目列表(包括答案和解析)

已知|a|=,|b|=3,a與b的夾角為45°,求使向量a+λb與λa+b的夾角是銳角時,λ的取值范圍.

分析:凡是與向量夾角有關的問題,多用數(shù)量積公式a·b=|a||b|cosθ來解決,只需求出a·b、|a|2、|b|2,即可轉化為實數(shù)不等式.

查看答案和解析>>

(1)已知函數(shù)f(x)=x+
2
x
在(0,
2
)上為減函數(shù);[
2
,+∞)上為增函數(shù).請你用單調(diào)性的定義證明:f(x)=x+
2
x
在(0,
2
)上為減函數(shù);
(2)判定并證明f(x)=x+
2
x
在定義域內(nèi)的奇偶性;
(3)當x∈(-∞,0)時,根據(jù)對稱性寫出函數(shù)f(x)=x+
2
x
的單調(diào)區(qū)間(只寫出區(qū)間即可),并求出f(x)在x∈[-2,-1]的值域.

查看答案和解析>>

(2006•浦東新區(qū)一模)已知函數(shù)f(x)=x+log3
x4-x

(1)求f(x)+f(4-x)的值;
(2)猜測函數(shù)f(x)的圖象具備怎樣的對稱性,并給出證明;
(3)若函數(shù)f(x)的圖象與直線x=1,x=3及x軸所圍成的封閉圖形的面積為S,求S的值.

查看答案和解析>>

已知函數(shù)f(x)=|4x-x2|(x∈R),對于任意的正實數(shù)t∈(0,b],定義:函數(shù)f(x)在[0,t]上的最小值為N(t),函數(shù)f(x)在[0,t]上的最大值為M(t),現(xiàn)若存在最小正整數(shù)m,使得M(t)-N(t)≤m•t對任意的正實數(shù)t∈(0,b]成立,則稱函數(shù)f(x)為區(qū)間(0,b]的“m階收縮函數(shù)”
(1)當t∈(0,1]時,試寫出N(t),M(t)的表達式,并判斷函數(shù)f(x)是否為(0,1]上的“m階收縮函數(shù)”,如果是,請寫出對應的m的值;(只寫出相應結論,不要求證明過程)
(2)若函數(shù)f(x)是(0,b]上的4階收縮函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

在復平面上繪出下列圖形(只畫出圖形,不寫過程):
(1)
π
4
≤argz≤
3
;
(2)|z-1-i|≤1;
(3)|z-i|≥|z+2-i|(4)|z-i|+|z+i|=2
2

查看答案和解析>>


同步練習冊答案