(Ⅱ)求函數(shù)的最大值及此時x值的集合, 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=1-2a-2acosx-2sin2x的最小值為g(a),a∈R,
(1)求g(a);
(2)若g(a)=
12
,求a及此時f(x)的最大值.

查看答案和解析>>

函數(shù)f(x)=2x2-2ax-2a-1(-1≤x≤1)的最小值為g(a)(a∈R).
(1)求g(a);
(2)若g(a)=
12
,求a及此時f(x)的最大值.

查看答案和解析>>

函數(shù)f(x)=1-ax2(a>0,x>0),該函數(shù)圖象在點P(x0,1-ax02) 處的切線為l,設(shè)切線l 分別交x 軸和y 軸于兩點M和N.
(1)將△MON (O 為坐標(biāo)原點)的面積S 表示為x0 的函數(shù)S(x0);
(2)若在x0=1處,S(x0)取得最小值,求此時a的值及S(x0)的最小值;
(3)若記M點的坐標(biāo)為M(m,0),函數(shù)y=f(x) 的圖象與x軸交于點T(t,0),則m與t的大小關(guān)系如何?證明你的結(jié)論.

查看答案和解析>>

函數(shù)f(x)=1-2a-2acosx-2sin2x的最小值為g(a),a∈R,
(1)求g(a);
(2)若g(a)=,求a及此時f(x)的最大值.

查看答案和解析>>

函數(shù)f(x)=1-2a-2acosx-2sin2x的最小值為g(a),a∈R,
(1)求g(a);
(2)若g(a)=,求a及此時f(x)的最大值.

查看答案和解析>>

一、1、D    2、A   3、B    4、D    5、B    6、C   7、A    8、D   9、A   10、C

二、11、二     12、2cm     13、1     14、49720,    15、5www.ks5 u.com

三、16、解:

(1)……3分

,得……………………………5分

(2)由(1)得………7分

當(dāng)時,的最大值為…………………………………9分

,得值為集合為………………………10分

(3)由所以時,為所求….12分

 

 

17、解:www.ks5 u.com

(1)

   數(shù)列的各項均為正數(shù),

   即,所以數(shù)列是以2為公比的等比數(shù)列……………………3分

的等差中項,

數(shù)列的通項公式…………………………………………………………6分

(2)由(1)及,…………………………………………8分

    

                        ①

      ②

②-①得,

…10分

要使成立,只需成立,即

使成立的正整數(shù)n的最小值為5…………………………………12分

18、解:(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

“兩球恰好顏色不同”共2×4+4×2=16種可能,………………4分

解法二:“有放回摸取”可看作獨立重復(fù)實驗   每次摸出一球得白球的概率為

 “有放回摸兩次,顏色不同”的概率為………………………4分

(2)設(shè)摸得白球的個數(shù)為,依題意得

……

…………………………………………………………………………………………10分

     ……………………………………………………12分

19、證明:(1)平面 平面平面,

平面 側(cè)面側(cè)面……………………4分

(2)的中點, 

側(cè)面側(cè)面 從而側(cè)  故的長就是點到側(cè)面的距離在等腰中,……………………………………8分

說明:亦可利用向量的方法求得

(3)幾何方法:可以證明就是二面角

平面角……………………………………10分

從而………………13分

亦可利用等積轉(zhuǎn)換算出到平面的高,

從而得出二面角的平面角為……13分

說明:也可以用向量法:平面的法向量為

平面的法向量為………………10分

二面角的平面角為

20、解(1)設(shè)雙曲線方程為

由已知得,再由,得

故雙曲線的方程為.…………………………………………5分

(2)將代入

 由直線與雙曲線交與不同的兩點得

 即.   ①   設(shè),則…………………8分

,由

.…………………………11分

于是,即解此不等式得    ②

由①+②得

故的取值范圍為…………………………………13分

21、解:(1)由題設(shè)知,又,得……………2分

       (2)…………………………………………………3分

        由題設(shè)知

  …………………………………………………4分

(當(dāng)時,取最小值)……………………4分

時,當(dāng)且僅當(dāng)   …………………7分

(3)時,方程變形為

 令………9分

,得,

,得………………………………11分

又因為

取得唯一的極小值

又當(dāng)時,的值,當(dāng)時,

的值,函數(shù)草圖如右

兩圖像由公共點時,方程有解,

的最小值為,………………………………………………13分

 

 

 

 

 

 


同步練習(xí)冊答案