20甲.如圖.正三棱柱的底面邊長為a.點M在邊BC上.△是以點M為直角頂點的等腰直角三角形. 查看更多

 

題目列表(包括答案和解析)

(08年濰坊市六模) (12分)如圖,正三棱柱的底面邊長為a,點M在邊BC上,△是以點M為直角頂點的等腰直角三角形.

 

  (1)求證點M為邊BC的中點;

 。2)求點C到平面的距離;

 。3)求二面角的大小.

 

查看答案和解析>>

如圖,正三棱柱的底面邊長為,側(cè)棱長為,點在棱上.

(1) 若,求證:直線平面;

(2)是否存在點, 使平面⊥平面,若存在,請確定點的位置,若不存在,請說明理由;

(3)請指出點的位置,使二面角平面角的大小為

查看答案和解析>>

如圖,正三棱柱的底面邊長為,側(cè)棱長為,點在棱上.

(1)若,求證:直線平面;

(2)若,二面角平面角的大小為, 求的值。  

查看答案和解析>>

(本小題8分)如圖,正三棱柱的底面邊長為,側(cè)棱,

延長線上一點,且

(1)求證:直線平面;

(2)求二面角的大小.

 

查看答案和解析>>

(本小題8分)如圖,正三棱柱的底面邊長為,側(cè)棱,
延長線上一點,且

(1)求證:直線平面;
(2)求二面角的大小.

查看答案和解析>>

1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B 

5.(文)D。ɡ恚〤 6.A 7.C 8.B 9.A 10.D 11.A 12.C 

13.33 14.7 15.18

  16.只要寫出-4c,2c,cc≠0)中一組即可,如-4,2,1等

  17.解析:

              

              

  18.解析:(1)由,,成等差數(shù)列,得

  若q=1,則,

  由≠0 得 ,與題意不符,所以q≠1.

  由,得

  整理,得,由q≠0,1,得

 。2)由(1)知:

  ,所以,成等差數(shù)列.

  19.解析:(1)記“摸出兩個球,兩球恰好顏色不同”為A,摸出兩個球共有方法種,

  其中,兩球一白一黑有種.

  ∴ 

  (2)法一:記摸出一球,放回后再摸出一個球“兩球恰好顏色不同”為B,摸出一球得白球的概率為,摸出一球得黑球的概率為,

  ∴ PB)=0.4×0.6+0.6+×0.4=0.48

  法二:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”.

  ∴ 

  ∴ “有放回摸兩次,顏色不同”的概率為

  20.解析:(甲)(1)∵ △為以點M為直角頂點的等腰直角三角形,∴ 

  ∵ 正三棱柱, ∴ 底面ABC

  ∴ 在底面內(nèi)的射影為CMAMCM

  ∵ 底面ABC為邊長為a的正三角形, ∴ 點MBC邊的中點.

 。2)過點CCH,由(1)知AMAMCM,

  ∴ AM⊥平面 ∵ CH在平面內(nèi), ∴ CHAM,

  ∴ CH⊥平面,由(1)知,,

  ∴ . ∴ 

  ∴ 點C到平面的距離為底面邊長為

  (3)過點CCII,連HI, ∵ CH⊥平面,

  ∴ HICI在平面內(nèi)的射影,

  ∴ HI,∠CIH是二面角的平面角.

  在直角三角形中,,

,

  ∴ ∠CIH=45°, ∴ 二面角的大小為45°

  (乙)解:(1)以B為原點,建立如圖所示的空間直角坐標系.

  ∵ AC2a,∠ABC=90°,

  ∴ 

  ∴ B(0,0,0),C(0,,0),A,0,0),

  ,0,3a),(0,3a),(0,0,3a).

  ∴ ,,,,,

  ∴ ,,,,

  ∴ ,, ∴ ,

  ∴ . 故BE所成的角為

 。2)假設存在點F,要使CF⊥平面,只要

  不妨設AFb,則F,0,b),,,,0,,,, ∵ , ∴ 恒成立.

  ,

  故當2a時,平面

  21.解析:(1)法一:l

  解得,. ∵ 、、成等比數(shù)列,

  ∴ , ∴  ,,,

  ∴ ,. ∴ 

  法二:同上得,

  ∴ PAx軸.. ∴ 

  (2) ∴ 

  即 , ∵ 

  ∴ ,即 ,. ∴ ,即 

  22.解析:(1). 又cb<1,

  故 方程fx)+1=0有實根,

  即有實根,故△=

  即

  又cb<1,得-3<c≤-1,由

 。2),

  ∴ cm<1 ∴ 

  ∴ . ∴ 的符號為正.

 


同步練習冊答案