證明:(Ⅰ)數(shù)列{}是等比數(shù)列,(Ⅱ) =4 查看更多

 

題目列表(包括答案和解析)

在等比數(shù)列{an}中,若a1=128,a8=1.

(1)求公比q和a12;

(2)證明:依次取出數(shù)列{an}中的第1項(xiàng),第4項(xiàng),第7項(xiàng),…,第3n-2項(xiàng),…,所得的新數(shù)列{a3n-2}(n∈N*)仍然是一個(gè)等比數(shù)列.

查看答案和解析>>

設(shè)數(shù)列{an},{bn}滿(mǎn)足a1=4,a2,an++1,bn+1

(1)用an表示an+1;并證明:n∈Nn,an>2;

(2)證明:{ln}是等比數(shù)列;

(3)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),Sn與2(n+)是否有確定的大小關(guān)系?若有,加以證明;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知數(shù)列{an}和{bn}滿(mǎn)足:a1λ,an+1ann-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

已知數(shù)列{an}和{bn}滿(mǎn)足:a1λan+1ann-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

已知數(shù)列{an}和{bn}滿(mǎn)足:a1λ,an+1ann-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

一.選擇題 1B  2B  3B   4C  5B  6A  7B   8D  9C  10C  11A  12B

二.填空題  13.3      14.      15.     16.

三.解答題

17.解:由已知      所以

所以.…… 4分

    解得.

所以   …… 8分

 于是 …… 10分

…… 12分

18.(Ⅰ)設(shè){an}的公比為q,由a3=a1q2得    …… 2分

          (Ⅱ)…… 12分

19.解: (1)由知, …①        ∴…②…… 2分

恒成立,

恒成立, 故…… 4分

 將①式代入上式得:

, 即, 即,代入②得, …… 8分

(2) 解得:

, ∴不等式的解集為…… 12分

20、證(I)由a1=1,an+1=Sn(n=1,2,3,…),知a2=S1=3a1,, ,∴

又an+1=Sn+1-Sn(n=1,2,3,…),則Sn+1-Sn=Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故數(shù)列{}是首項(xiàng)為1,公比為2的等比數(shù)列 …… 8分

證(II) 由(I)知,,于是Sn+1=4(n+1)?=4an(n)…… 12分

又a2=3S1=3,則S2=a1+a2=4=4a1,因此對(duì)于任意正整數(shù)n≥1都有Sn+1=4an

21. 解:(1). …… 2分

當(dāng)時(shí), 時(shí),, 因此的減區(qū)間是

 在區(qū)間上是減函數(shù)…… 5分

當(dāng)時(shí), 時(shí),, 因此的減區(qū)間是…… 7分

 在區(qū)間上是減函數(shù)

綜上,…… 8分

(2). 若

在區(qū)間上,     …… 12分

22.解:(1)由題意和導(dǎo)數(shù)的幾何意義得:

由(1)得c=-a-2c,代入a<b<c,再由a<0得

…… 6分

…… 10分

…… 14分

 

 


同步練習(xí)冊(cè)答案