(2)求在點(diǎn)處的切線與直線及曲線所圍成的封閉圖形的面積, 查看更多

 

題目列表(包括答案和解析)

已知,,。

(1)求在點(diǎn)處的切線與直線及曲線所圍成的封閉圖形的面積;

(2)是否存在實(shí)數(shù),使的極大值為3?若存在,求出的值,若不存在,

請(qǐng)說明理由.

查看答案和解析>>

已知與曲線在點(diǎn)(1,0)處相切,為該曲線另一條切線,且.

(1)求直線及直線的方程;

(2)求由直線和x軸所圍成的三角形的面積.

 

查看答案和解析>>

已知l1與曲線y=x2+x-2在點(diǎn)(1,0)處相切,l2為該曲線另一條切線,且l1l2

(1)求直線l1及直線l2的方程;

(2)求由直線l1,l2和x軸所圍成的三角形的面積.

查看答案和解析>>

已知l1與曲線y=x2+x-2在點(diǎn)(1,0)處相切,l2為該曲線另一條切線,且l1l2

(1)求直線l1及直線l2的方程;

(2)求由直線l1,l2和x軸所圍成的三角形的面積.

查看答案和解析>>

加試題:已知曲線C:y=
1
x
(x>0)
,過P1(1,0)作y軸的平行線交曲線C于Q1,過Q1作曲線C的切線與x軸交于P2,過P2作與y軸平行的直線交曲線C于Q2,照此下去,得到點(diǎn)列P1,P2,…,和Q1,Q2,…,設(shè)|
PnQn
|=an
2
|
QnQn+1
|=bn(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:b1+b2+…+bn>2n-2-n;
(3)求證:曲線C與它在點(diǎn)Qn處的切線,以及直線Pn+1Qn+1所圍成的平面圖形的面積與正整數(shù)n的值無關(guān).

查看答案和解析>>

一、選擇題(每小題5分,共40分)

題號(hào)

1

2

3

4

5

6

7

8

答案

A

A

C

D

C

A

B

D

二、填空題(每小題5分,共30分)

9.84; 10.;  11.45;  12. -6;  13.;  14.;  15.3

三、解答題(共80分.解答題應(yīng)寫出推理、演算步驟)

16. 解:(1) 

的最小正周期,      ……………………………4分

且當(dāng)時(shí)單調(diào)遞增.

的單調(diào)遞增區(qū)間(寫成開區(qū)間不

扣分).…………6分

(2)當(dāng)時(shí)

當(dāng),即時(shí)

所以.      ……………9分

的對(duì)稱軸.      ……12分

17. 解:(1)依題意,的可能取值為1,0,-1      ………1分

的分布列為            …4分

1

0

p

==…………6分

(2)設(shè)表示10萬元投資乙項(xiàng)目的收益,則的分布列為……8分

2

…………10分

依題意要求…  11分

………12分   

注:只寫出扣1分

18. 解:(1)①當(dāng)直線垂直于軸時(shí),則此時(shí)直線方程為,與圓的兩個(gè)交點(diǎn)坐標(biāo)為,其距離為   滿足題意   ………1分

②若直線不垂直于軸,設(shè)其方程為,即     

設(shè)圓心到此直線的距離為,則,得  …………3分       

,,                                    

故所求直線方程為                               

綜上所述,所求直線為   …………7分                  

(2)設(shè)點(diǎn)的坐標(biāo)為),點(diǎn)坐標(biāo)為

點(diǎn)坐標(biāo)是                       …………9分

,

  即    …………11分          

又∵,∴                     

 ∴點(diǎn)的軌跡方程是,               …………13分     

軌跡是一個(gè)焦點(diǎn)在軸上的橢圓,除去短軸端點(diǎn)。    …………14分     

19.解一:(1)證明:連結(jié)AD1,由長(zhǎng)方體的性質(zhì)可知:

AE⊥平面AD1,∴AD1是ED1在

平面AD1內(nèi)的射影。又∵AD=AA1=1, 

∴AD1⊥A1D   

∴D1E⊥A1D1(三垂線定理)        4分

(2)設(shè)AB=x,∵四邊形ADD1A是正方形,

∴小螞蟻從點(diǎn)A沿長(zhǎng)方體的表面爬到

點(diǎn)C1可能有兩種途徑,如圖甲的最短路程為

如圖乙的最短路程為

   

………………9

(3)假設(shè)存在,平面DEC的法向量,

設(shè)平面D1EC的法向量,則     

…………………12分

由題意得:

解得:(舍去)

………14分

20. 解:(1)當(dāng).…(1分)

           ……(3分)

的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為:.

……(4分)

(2)切線的斜率為,

∴ 切線方程為.……(6分)

            所求封閉圖形面積為

.  

……(8分)

(3),     ……(9分)

            令.                         ……(10分)

列表如下:

x

(-∞,0)

0

(0,2-a)

2-a

(2-a,+ ∞)

0

+

0

極小

極大

由表可知,.           ……(12分)

設(shè)

上是增函數(shù),……(13分)

            ∴ ,即,

∴不存在實(shí)數(shù)a,使極大值為3.            ……(14)

21.解:(1)由   而

  解得A=1……………………………………2分

(2)令  

當(dāng)n=1時(shí),a1=S1=2,當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n

綜合之:an=2n…………………………………………6分

由題意

∴數(shù)列{cn+1}是為公比,以為首項(xiàng)的等比數(shù)列。

………………………9分

(3)當(dāng)

………………………11分

當(dāng)

………13分

綜合之:

………14分

 

 


同步練習(xí)冊(cè)答案