(Ⅰ)求函數(shù)在上的單調(diào)增區(qū)間.并證明之, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x2-(2a-1)x+a2-2,g(x)=-3x-2,
(1)若f(x)在區(qū)間(3,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若f(x)與非負x軸至少有一個交點,求a的取值范圍;
(3)當a=
14
時,判斷f(x)與g(x)的交點個數(shù)并說明理由.

查看答案和解析>>

已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調(diào)遞減,求的最小值;
(3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數(shù)數(shù)列,使得成立.

查看答案和解析>>

已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調(diào)遞減,求的最小值;
(3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數(shù)數(shù)列,使得成立.

查看答案和解析>>

已知函數(shù)f(x)=x2-(2a-1)x+a2-2,g(x)=-3x-2,
(1)若f(x)在區(qū)間(3,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若f(x)與非負x軸至少有一個交點,求a的取值范圍;
(3)當數(shù)學公式時,判斷f(x)與g(x)的交點個數(shù)并說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x2-(2a-1)x+a2-2,g(x)=-3x-2,
(1)若f(x)在區(qū)間(3,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若f(x)與非負x軸至少有一個交點,求a的取值范圍;
(3)當時,判斷f(x)與g(x)的交點個數(shù)并說明理由.

查看答案和解析>>

一、選擇題:(每小題5分,共60分)

   A C C D D      A A B B C     C D

注:選擇題第⑺題選自課本43頁第6題.

二、填空題:(每小題4分,共16分)

(13) ;     (14) ;       (15) ;       (16) 6.

三、解答題:(本大題共6小題,共74分)

(17) 解:由對數(shù)函數(shù)的定義域知.                 ………………2分

解這個分式不等式,得.                          ………………4分

故函數(shù)的定義域為.                           ………………5分

,                  ………………8分

  因為,所以由對數(shù)函數(shù)的單調(diào)性知.          ………………9分

  又由)知,解這個分式不等式,得.  ………………11分

  故對于,當                     ………………12分

(18) 解:(Ⅰ)由題意,=1又a>0,所以a=1.………………4分

      (Ⅱ),                 ………………6分

時,,無遞增區(qū)間;       ………………8分

x<1時,,它的遞增區(qū)間是.……11分

     綜上知:的單調(diào)遞增區(qū)間是.        ……………12分

(19)證明:(Ⅰ) 函數(shù)在上的單調(diào)增區(qū)間為

(證明方法可用定義法或?qū)?shù)法)                     ……………8分

  (Ⅱ) ,所以,解得.      ……………12分

(20) 解:(Ⅰ)設投資為萬元,產(chǎn)品的利潤為萬元,產(chǎn)品的利潤為萬元.由題意設,

由圖可知,.                           ………………2分

,.                               ………………4分

從而.             ………………5分(Ⅱ)設產(chǎn)品投入萬元,則產(chǎn)品投入萬元,設企業(yè)利潤為萬元.

,          ………………7分

,則

時,,此時.          ………………11分

答:當產(chǎn)品投入6萬元,則產(chǎn)品投入4萬元時,該企業(yè)獲得最大利潤,利潤為2.8萬元.                                                      ………………12分

(21)解:(Ⅰ) ……1分

       根據(jù)題意,                                                       …………4分

       解得.                                                                   …………6分

(Ⅱ)因為 …………7分

   (i)時,函數(shù)無最大值,

           不合題意,舍去.                                                                       …………9分

   (ii)時,根據(jù)題意得

          

           解之得                                                                     …………11分

        為正整數(shù),   =3或4.                                                      …………12分

(22) 解:,

(Ⅰ)當時,                    ………………2分

為其不動點,即

的不動點是.                   ……………4分

(Ⅱ)由得:.  由已知,此方程有相異二實根,

恒成立,即對任意恒成立.

          ………………8分(Ⅲ)設,

直線是線段AB的垂直平分線,   ∴    …………10分

記AB的中點由(Ⅱ)知    

        ……………………12分

化簡得:

(當時,等號成立).

                                     ……………………14分

 


同步練習冊答案