17.已知空間向量 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知空間向量

    (1)求的值;

    (2)設(shè)函數(shù)的最小正周期及取得最大值時x的值。

查看答案和解析>>

(本小題滿分12分)已知空間向量

(1)求的值;
(2)設(shè)函數(shù)的最小正周期及取得最大值時x的值。

查看答案和解析>>

已知直三棱柱中, , , 的交點, 若.

(1)求的長;  (2)求點到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>

一、選擇題

2,4,6

二、填空題

13.   14.3   15.-192    16. 22.2

三、解答題

17.解:(1)∵

①……………………2分

②……………………4分

聯(lián)立①,②解得:……………………6分

(2)

……………………10分

……………………11分

當(dāng)

此時……………………12分

18.解:以D1為原點,D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,

則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2)P(1,1,4)………………2分

   (1)∵

∴PA⊥B1D1.…………………………4分

(2)平面BDD1B­1的法向量為……………………6分

設(shè)平面PAD的法向量,則n⊥

…………………………10分

設(shè)所求銳二面角為,則

……………………12分

19.解:(1)從50名教師隨機(jī)選出2名的方法數(shù)為

選出2人使用版本相同的方法數(shù)為

故2人使用版本相同的概率為:

…………………………5分

(2)∵

0

1

2

P

的分布列為

 

 

………………10分

……………………12分

可以不扣分)

20.解:(1)依題意,

當(dāng)

兩式相減得,得

……………………4分

當(dāng)n=1時,

=1適合上式……………………5分

…………………………6分

(2)由題意,

………………10分

不等式恒成立,即恒成立.…………11分

經(jīng)檢驗:時均適合題意(寫出一個即可).……………………12分

21.解:(1)設(shè),

由條件知

故C的方程為:……………………4分

(2)由

…………………………5分

設(shè)l與橢圓C交點為

(*)

……………………7分

消去

整理得………………9分

,

,

容易驗證所以(*)成立

即所求m的取值范圍為………………12分

22.(1)證明:假設(shè)存在使得

…………………………2分

上的單調(diào)增函數(shù).……………………5分

是唯一的.……………………6分

(2)設(shè)

上的單調(diào)減函數(shù).

……………………8分

…………10分

…………12分

為鈍角

∴△ABC為鈍角三角形.……………………14分

 

 

 


同步練習(xí)冊答案