.已知橢圓=1的離心率.則m的值為 25 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

 

查看答案和解析>>

已知函數(shù)f(x)=2xa.

(1)對于任意實數(shù)x1x2,試比較f(-1)的大;

(2)已知P=[1,4],若關(guān)于x的不等式f(ax2-4x)>4+a的解集為M,且PM≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

(本題滿分15分)已知橢圓=1(a為常數(shù),且a>1),向量=(1, t) (t >0),過點(diǎn)A(-a, 0)且以為方向向量的直線與橢圓交于點(diǎn)B,直線BO交橢圓于點(diǎn)C(O為坐標(biāo)原點(diǎn)).

(1) 求t表示△ABC的面積S( t );

(2) 若a=2,t∈[, 1],求S( t )的最大值.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓=1的左、右頂點(diǎn)為AB,右焦點(diǎn)為F.設(shè)過點(diǎn)T(tm)的直線TA,TB與此橢圓分別交于點(diǎn)M(x1y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設(shè)動點(diǎn)P滿足PF2PB2=4,求點(diǎn)P的軌跡;

(2)設(shè)x1=2,x2,求點(diǎn)T的坐標(biāo);

(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān)).

查看答案和解析>>

如圖,已知橢圓=1(ab>0)過點(diǎn)(1,),離心率為,左、右焦點(diǎn)分別為F1F2.點(diǎn)P為直線lxy=2上且不在x軸上的任意一點(diǎn),直線PF1PF2與橢圓的交點(diǎn)分別為A、BC、D,O為坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程.

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2.

(ⅰ)證明:=2.

(ⅱ)問直線l上是否存在點(diǎn)P,使得直線OAOB、OCOD的斜率kOA、kOBkOC、kOD滿足kOAkOBkOCkOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案