題目列表(包括答案和解析)
解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此
解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)
(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。
16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個(gè)單位就可得到g(x)圖象,
這時(shí)函數(shù)g(x)只有兩個(gè)零點(diǎn),所以(1)不對
(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對稱圖象,然后向下平移不超過2個(gè)單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)
(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會(huì)再關(guān)于原點(diǎn)對稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對。所以正確的只有(2)
一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個(gè)數(shù)是綠球個(gè)數(shù)的兩倍,黃球個(gè)數(shù)是綠球個(gè)數(shù)的一半,現(xiàn)在從該盒中隨機(jī)取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分?jǐn)?shù)Y的分布列.
分組 | 頻數(shù) | 頻率 |
(3.9,4.2] | 4 | 0.08 |
(4.2,4.5] | 5 | 0.10 |
(4.5,4.8] | 25 | m |
(4.8,5.1] | x | y |
(5.1,5.4] | 6 | 0.12 |
合計(jì) | n | 1.00 |
1 |
13 |
分組 | 頻數(shù) | 頻率 |
(3.9,4.2] | 4 | 0.08 |
(4.2,4.5] | 5 | 0.10 |
(4.5,4.8] | 25 | m |
(4.8,5.1] | x | y |
(5.1,5.4] | 6 | 0.12 |
合計(jì) | n | 1.00 |
解析 第二列等式的右端分別是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第n項(xiàng)an與第n-1項(xiàng)an-1(n≥2)的差為:an-an-1=n,∴a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n,各式相加得,
an=a1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an=,∴a=n2(n+1)2.
答案 n2(n+1)2
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com