分析:因為圓的位置由圓心確定.所以要與網(wǎng)格有公共點只要圓心到網(wǎng)格線的距離小于或等于半徑.只要考慮一個三角形即可.將此三角形的各邊沿與其垂直的方向向三角形內(nèi)部平移.得到一個小三角形.圓心應(yīng)落在此小三角形內(nèi) 查看更多

 

題目列表(包括答案和解析)

如圖所示的幾何體是一棱長為4cm的正方體,若在其中一個面的中心位置上,挖一個直徑為2cm、深為1cm的圓柱形的洞,求挖洞后幾何體的表面積是多少?(π取3.14)

[分析] 因為正方體的棱長為4cm,而洞深只有1cm,所以正方體沒有被打透.這樣一來打洞后所得幾何體的表面積等于原來正方體的表面積,再加上圓柱的側(cè)面積,這個圓柱的高為1cm,底面圓的半徑為1cm.

查看答案和解析>>

解析幾何是數(shù)與形的結(jié)合,由方程組的解的組數(shù)可得圖形的位置關(guān)系.例如,當兩個圓組成方程組無解時,說明兩圓無公共點,此時兩圓的位置關(guān)系為相離,但可能是外離也可能是內(nèi)含.你能判斷方程組其他解的組數(shù)與兩圓的位置間的關(guān)系嗎?

查看答案和解析>>

解析幾何是數(shù)與形的結(jié)合,由方程組的解的組數(shù)可得圖形的位置關(guān)系.例如,當兩個圓組成方程組無解時,說明兩圓無公共點,此時兩圓的位置關(guān)系為相離,但可能是外離也可能是內(nèi)含.你能判斷方程組其他解的組數(shù)與兩圓的位置間的關(guān)系嗎?

查看答案和解析>>

在平面直角坐標系中,曲線與坐標軸的交點都在圓上.

(1)求圓的方程;

 (2)若圓與直線交于、兩點,且,求的值.

【解析】本試題主要是考查了直線與圓的位置關(guān)系的運用。

(1)曲線軸的交點為(0,1),

軸的交點為(3+2,0),(3-2,0) 故可設(shè)的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.

(2)因為圓與直線交于、兩點,且。聯(lián)立方程組得到結(jié)論。

 

查看答案和解析>>

已知點),過點作拋物線的切線,切點分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又,

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當且僅當,即,時取等號.

故圓面積的最小值

 

查看答案和解析>>


同步練習(xí)冊答案