6定義在R上的函數(shù)f,且f,當(dāng)0<x<1時(shí).f(x)=在[-1,1]上解析式,上的單調(diào)性,=λ在[-1,1]上有解 查看更多

 

題目列表(包括答案和解析)

已知定義在R上的函數(shù)f(x)=ax3-3x,a為常數(shù),且x=1是函數(shù)f(x)的一個(gè)極值點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g(x)=f(x)+f'(x)-6,x∈R,求g(x)的單調(diào)區(qū)間;
(Ⅲ) 過(guò)點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求m的取值范圍.

查看答案和解析>>

已知定義在R上的函數(shù)f(x)=ax3-3x,a為常數(shù),且x=1是函數(shù)f(x)的一個(gè)極值點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g(x)=f(x)+f'(x)-6,x∈R,求g(x)的單調(diào)區(qū)間;
(Ⅲ) 過(guò)點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求m的取值范圍.

查看答案和解析>>

已知定義在R上的函數(shù)f(x)=ax3-3x,a為常數(shù),且x=1是函數(shù)f(x)的一個(gè)極值點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g(x)=f(x)+f'(x)-6,x∈R,求g(x)的單調(diào)區(qū)間;
(Ⅲ) 過(guò)點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求m的取值范圍.

查看答案和解析>>

一個(gè)盒子內(nèi)裝有6張卡片,每張卡片上分別寫(xiě)有如下6個(gè)定義在R上的函數(shù):f(x)=sinx,g(x)=cosx,h(x)=xcosx,k(x)=x4,l(x)=x5,m(x)=x3sinx
(I)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得到一個(gè)新函數(shù),求所得函數(shù)既不是奇函數(shù)又不是偶函數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張記有奇函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)不超過(guò)3次的概率.

查看答案和解析>>

10、設(shè)f(x)是定義在R上以6為周期的函數(shù),f(x)在(0,3)內(nèi)單調(diào)遞減,且y=f(x)的圖象關(guān)于直線x=3對(duì)稱(chēng),則下面正確的結(jié)論是( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案