,∴數(shù)列是等差數(shù)列. ―――――――4分 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項和Tn.

【解析】本試題主要是考查了等比數(shù)列的通項公式和求和的運用。第一問中,利用等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項求和得到Tn.

解: (Ⅰ) 設(shè):{an}的公差為d,

因為解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因為……………8分

 

查看答案和解析>>

已知等差數(shù)列的首項,公差,且第2項、第5項、第14項分別是等比數(shù)列的第2項、第3項、第4項。

①求數(shù)列的通項公式;

②設(shè)數(shù)列均有成立,求+

 

查看答案和解析>>

已知等差數(shù)列的首項,公差,且第2項、第5項、第14項分別是等比數(shù)列的第2項、第3項、第4項。
①求數(shù)列的通項公式;
②設(shè)數(shù)列均有成立,求+

查看答案和解析>>

給出下列結(jié)論:
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)某工產(chǎn)加工的某種鋼管,內(nèi)徑與規(guī)定的內(nèi)徑尺寸之差是離散型隨機(jī)變量;
(3)隨機(jī)變量的方差和標(biāo)準(zhǔn)差都反映了隨機(jī)變量的取值偏離于均值的平均程度,它們越小,則隨機(jī)變量偏離于均值的平均程度越;
(4)若關(guān)于的不等式上恒成立,則的最大值是1;
(5)甲、乙兩人向同一目標(biāo)同時射擊一次,事件:“甲、乙中至少一人擊中目標(biāo)”與事件:“甲,乙都沒有擊中目標(biāo)”是相互獨立事件。
其中結(jié)論正確的是         。(把所有正確結(jié)論的序號填上)

查看答案和解析>>

已知正項數(shù)列的前n項和滿足:,

(1)求數(shù)列的通項和前n項和

(2)求數(shù)列的前n項和;

(3)證明:不等式  對任意的,都成立.

【解析】第一問中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問中,利用裂項求和的思想得到結(jié)論。

第三問中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項數(shù)列,∴           ∴ 

又n=1時,

   ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對任意的,都成立.

 

查看答案和解析>>


同步練習(xí)冊答案