題目列表(包括答案和解析)
|
α |
|
β |
|
π |
4 |
| ||
2 |
|
設點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得
;
(2)當時,若,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.
由拋物線定義得到
第二問設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當時,該逆命題的一個反例.(反例不唯一)
② 設,分別過作
拋物線的準線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構造滿足條件且的一組個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標()滿足 ”,即:
“當時,若,且點的縱坐標()滿足,則”.此命題為真.事實上,設,
分別過作拋物線準線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補充條件2:“點與點為偶數(shù),關于軸對稱”,即:
“當時,若,且點與點為偶數(shù),關于軸對稱,則”.此命題為真.(證略)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調(diào)遞減;當時單調(diào)遞增,故當時,取最小值
于是對一切恒成立,當且僅當. ①
令則
當時,單調(diào)遞增;當時,單調(diào)遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
(1)(本小題滿分7分)
選修4-4:矩陣與變換
已知矩陣 ,A的一個特征值,其對應的特征向量是.
(Ⅰ)求矩陣;
(Ⅱ)求直線在矩陣M所對應的線性變換下的像的方程
(2)
(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:,求直線l與曲線C相交所成的弦的弦長.
((3)(本小題滿分7分)
選修4-5:不等式選講 解不等式∣2x-1∣<∣x∣+1
乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換。每次發(fā)球,勝方得1分,負方得0分。設在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結(jié)果相互獨立。甲、乙的一局比賽中,甲先發(fā)球。
(Ⅰ)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(Ⅱ)表示開始第4次發(fā)球時乙的得分,求的期望。
【解析】解:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com