12.已知數(shù)列是遞減數(shù)列.且對(duì)任意.都有恒成立.則實(shí)數(shù)的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是遞減數(shù)列,且對(duì)任意,都有恒成立,則實(shí)數(shù)的取值范圍是         

查看答案和解析>>

已知定義域?yàn)镽的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1
.給出下列結(jié)論:f(
π
4
)=
1
2
;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結(jié)論序號(hào)是(  )
A、②③B、②④C、①③D、①④

查看答案和解析>>

已知定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052306021329681346/SYS201205230603339062768729_ST.files/image001.png">的函數(shù)對(duì)任意實(shí)數(shù)滿足,且.給出下列結(jié)論:①,②為奇函數(shù),③為周期函數(shù),④內(nèi)單調(diào)遞減.其中,正確的結(jié)論序號(hào)是            

 

 

查看答案和解析>>

已知定義域?yàn)镽的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1
.給出下列結(jié)論:f(
π
4
)=
1
2
;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結(jié)論序號(hào)是(  )
A.②③B.②④C.①③D.①④

查看答案和解析>>

已知定義域?yàn)镽的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且.給出下列結(jié)論:;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結(jié)論序號(hào)是( )
A.②③
B.②④
C.①③
D.①④

查看答案和解析>>

一.選擇題

1―5  CBABA   6―10  CADDA

二.填空題

11.       12.()       13.2          14.         15.

16.(1,4)

三.解答題

數(shù)學(xué)理數(shù)學(xué)理17,解:①         =2(1,0)                      (2分)             

        ?,                                        (4分)

  • ?

            cos              =

     

            由,  ,    即B=              (6分)

                                                   (7分)

                                                            (9分)

    ,                                                         (11分)

    的取值范圍是(,1                                                      (13分)

    18.解:①設(shè)雙曲線方程為:  ()                                 (1分)

    由橢圓,求得兩焦點(diǎn),                                           (3分)

    ,又為一條漸近線

    , 解得:                                                     (5分)

                                                        (6分)

    ②設(shè),則                                                      (7分)

          

    ?                             (9分)

    ,  ?              (10分)

                                                    (11分)

      ?

    ?                                        (13分)

      單減區(qū)間為[]        (6分)

     

    ②(i)當(dāng)                                                      (8分)

    (ii)當(dāng),

    ,  (),,

    則有                                                                     (10分)

                                                   (11分)

      在(0,1]上單調(diào)遞減                     (12分)

                                                     (13分)

    20.解:①       

                                                            (2分)

    從而數(shù)列{}是首項(xiàng)為1,公差為C的等差數(shù)列

      即                                (4分)

     

       即………………※              (6分)

    當(dāng)n=1時(shí),由※得:c<0                                                    (7分)

    當(dāng)n=2時(shí),由※得:                                                 (8分)

    當(dāng)n=3時(shí),由※得:                                                 (9分)

    當(dāng)

        (

                                              (11分)

                             (12分)

    綜上分析可知,滿足條件的實(shí)數(shù)c不存在.                                    (13分)

    21.解:①設(shè)過A作拋物線的切線斜率為K,則切線方程:

                                                                    (2分)

        即

                                                                                                       (3分)

    ②設(shè)   又

         

                                                             (4分)

    同理可得 

                                                    (5分)

    又兩切點(diǎn)交于  ,

                                   (6分)

    ③由  可得:

     

                                                    (8分)

                      (9分)

     

    當(dāng) 

    當(dāng) 

                                                         (11分)

    當(dāng)且僅當(dāng),取 “=”,此時(shí)

                                           (12分)

    22.①證明:由,    

      即證

      ()                                    (1分)

    當(dāng)  

          即:                          (3分)

      ()    

    當(dāng)   

       

                                                             (6分)

    ②由      

    數(shù)列

                                                  (8分)

    由①可知, 

                        (10分)

    由錯(cuò)位相減法得:                                       (11分)

                                        (12分)

     

     


    同步練習(xí)冊(cè)答案