解析:依題意有.∴.即.∴.得.∴ 查看更多

 

題目列表(包括答案和解析)

一支車隊有15輛車,某天依次出發(fā)執(zhí)行運輸任務,第一輛車于下午2時出發(fā),第二輛車于下午2時10分出發(fā),第三輛車于下午2時20分出發(fā),依此類推。假設所有的司機都連續(xù)開車,并都在下午6時停下來休息。

(1)到下午6時最后一輛車行駛了多長時間?

(2)如果每輛車的行駛速度都是60,這個車隊當天一共行駛了多少千米?

【解析】第一問中,利用第一輛車出發(fā)時間為下午2時,每隔10分鐘即小時出發(fā)一輛

則第15輛車在小時,最后一輛車出發(fā)時間為:小時

第15輛車行駛時間為:小時(1時40分)

第二問中,設每輛車行駛的時間為:,由題意得到

是以為首項,為公差的等差數列

則行駛的總時間為:

則行駛的總里程為:運用等差數列求和得到。

解:(1)第一輛車出發(fā)時間為下午2時,每隔10分鐘即小時出發(fā)一輛

則第15輛車在小時,最后一輛車出發(fā)時間為:小時

第15輛車行駛時間為:小時(1時40分)         ……5分

(2)設每輛車行駛的時間為:,由題意得到

是以為首項,為公差的等差數列

則行駛的總時間為:    ……10分

則行駛的總里程為:

 

查看答案和解析>>

已知數列是公差不為零的等差數列,,且、成等比數列。

⑴求數列的通項公式;

⑵設,求數列的前項和。

【解析】第一問中利用等差數列的首項為,公差為d,則依題意有:

第二問中,利用第一問的結論得到數列的通項公式,

,利用裂項求和的思想解決即可。

 

查看答案和解析>>

已知函數;

(1)若函數在其定義域內為單調遞增函數,求實數的取值范圍。

(2)若函數,若在[1,e]上至少存在一個x的值使成立,求實數的取值范圍。

【解析】第一問中,利用導數,因為在其定義域內的單調遞增函數,所以 內滿足恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉換為不等式有解來解答即可。

解:(1)

因為在其定義域內的單調遞增函數,

所以 內滿足恒成立,即恒成立,

亦即,

即可  又

當且僅當,即x=1時取等號,

在其定義域內為單調增函數的實數k的取值范圍是.

(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設

 上的增函數,依題意需

實數k的取值范圍是

 

查看答案和解析>>

已知,函數

(1)當時,求函數在點(1,)的切線方程;

(2)求函數在[-1,1]的極值;

(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設,

求導,得

    

在區(qū)間上為增函數,則

依題意,只需,即 

解得  (舍去)

則正實數的取值范圍是(,

 

查看答案和解析>>

如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出之間的等量關系,以及之間的等量關系;

(2)求證:);

(3)設,對所有恒成立,求實數的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,

第三問 

.………………………2分

因為函數在區(qū)間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因為函數在區(qū)間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>


同步練習冊答案